

Page 1 of 31

SAFETY DATA SHEET

(according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA Revision date: 01.05.2020 Version 4.2 AZOT SECTION 1: IDENTIFICATION OF THE SUBSTANCE AND OF THE COMPANY 1.1 Product identifier Trade name: Ammonia Ammonia anhydrous Other names: Name IUPAC/ international chemical Ammonia name INDEX No. and name as listed in Annex 007-001-00-5 ammonia, anhydrous VI of CLP: CAS No .: 7664-41-7 EINECS No .: 231-635-3 **REACH** registration No.: 01-2119488876-14-0048 Molecular formula H3N 1.2 Relevant identified uses of the substance or mixture and uses advised against Use of the substance in the manufacture of nitric acid, alkalis, dyes, pharmaceuticals, cosmetics, vitamins, synthetic textile fibres and plastics. (see ES 1) Use in photochemical processes, refrigerant systems, insulation products, inks & toners, coatings, thinners & paint removers, processing aid in chemical industry. Use as an extraction agent, in NOx/SOx reduction, processing aid in nutrition, neutralising agent, textile dye, washing & cleaning products, textile treatment. Use in pulp/paper treatment, leather treatment, wood treatment, metal surface treatment, the treatment of rubber/latex, the manufacture of semiconductors/electronics. Use in adhesives & sealants, polymer preparations, aircare products & preservatives. Relevant identified uses: (see ES 2) Use as a laboratory chemical, refrigerant in cooling systems, water treatment chemical, fertiliser, coating, paint thinner or paint remover, photochemical. Use as a cleaning product, leather or other surface treatment product, pH regulatory or neutralisation agent, process aid for nutrition (see ES 3) Use in coatings, paints, thinners and removers; use in fillers, putties and plasters, use of washing and cleaning products, use in cosmetic & personal care products (see ES 4) Uses advised against: None 1.3 Details of the supplier of the safety data sheet OSTCHEM GERMANY GmbH Erdmannstr. 10 222765 Hamburg, Germany Phone: +49 40 5300 300 Only Representative: Fax. +49 40 5300 30 33 www.ostchem.com E-mail: Irene.Nasdala@ebicon.de PrJSC "AZOT" 72, Heroiv Kholodnoho Yaru Str., Cherkasy, Ukraine Tel.: +38 0472 39-63-03 +38 0472 39-23-33 Manufacturer: URL website: http://www.azot.ck.ua Email: let@azot.ck.ua

Emergency phone number:Tel: + 49 405 300 300 Opening hours: 9-18 (CET) Languages of the phone service: German, English, Russian Tel: + 38 (0472) 39 61 17 Opening hours: 0-24 Languages of the phone service: Russian, Ukrainian

sale@azot.ck.ua

PrJSC "AZOT"

onr@azot.ck.ua

Not available

REACH Department

E-mail address of the competent person

responsible for the Safety Data Sheet

1.4 Emergency telephone number

National contact:

Page 2 of 31

SAFETY DATA SHEET (according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA

Revision date: 01.05.2020 Version 4.2

AZOT						
	SECTION 2: HAZARDS IDENTIFICATION					
2.1 Classification of the substance						
2.1.1 Classification in accordance with Regulation 1272/2008 (CLP)						
	H221 Flammable Gas [not applicable for Flam. Gas 2					
Hazard statement(s):	solutions]	Liquefied gas				
	H280 Contains gas under pressure; may	Skin Corr. 1B				
	explode if heated.	Acute Tox. 3				
	H314 Causes severe skin burns and eye	Aquatic Acute 1				
	damage					
	H331 Toxic if inhaled H400 Very toxic to aquatic life					
	M-Factor (self-classification) = 1					
2.2 Label elements						
2211a	belling in accordance with Regulation 1272/2	008 (CLP)				
Hazard pictogram(s):						
nazaru piciogram(s).						
	$\land \land \land$	NV				
		\mathbf{Y}_{2}				
		32				
		$\mathbf{\vee}$				
	GHS 04 GHS 05 GHS 06 GHS 09	•				
Signal word	Danger					
Hazard statement(s):	H221 Flammable gas					
	H280 Contains gas under pressure; may ex	plode if heated				
	H331 Toxic if inhaled					
	H314 Causes severe skin burns and eye da	image				
	H400 Very toxic to aquatic life					
Supplemental Hazard information (EU): EU	H071: Corrosive to the respiratory tract					
Precautionary statement(s):						
Precautionary Statement Prevention		s, sparks, open flames and other ignition				
	sources. No smoking					
	P260 Do not breathe dust, fume, gas, mist, P280 Wear protective gloves, protective clo					
Precautionary Statement Response	P303+P361+P353 IF ON SKIN (or hair): Ta	ke off immediately all contaminated clothing.				
·····	Rinse skin with water or shower.					
	P304+P340 IF INHALED: Remove person t	o fresh air and keep comfortable for				
	breathing					
	P305+P351+P338 IF IN EYES: Rinse cautio					
	Remove contact lenses, if present and easy P310 Immediately call a POISON CENTER					
Precautionary Statement Storage	P403 Store in a well-ventilated place					
	P405 Store locked up					
	P410+P403 Protect from sunlight. Store in a					
Precautionary Statement Disposal	P501 Dispose of contents and container in a	accordance with national regulation				
	According to Appay VIII of Degulation (EC)	No 1007/2006 concerning the Degistration				
	According to Annex XIII of Regulation (EC) Evaluation, Authorisation and Restriction of					
2.3 Other hazards:	Not fulfilling PBT (persistent/bioaccumulativ					
	Not fulfilling vPvB (very persistent/very bioa					
SECTION	3: COMPOSITION/INFORMATION ON ING	REDIENTS				
3.1 Substances						
Name	INDEX No. as listed in Annex VI of CLP	Weight % content (or range)				
Name	INDEX NO. as listed in Annex VI of CEI	Weight // content (or range)				
Ammonia, anhydrous	007-001-00-5 Not less than 99,6 % (w/w)					
SECTION 4: FIRST-AID MEASURES						
4.1 Description of first aid measures						
	No action shall be taken involving any pe	rsonal risk or without suitable training. Gas				
	masks with cartridges for ammonia must be	e used for evacuation from the hazard zone.				
General notes:		ng aid to give mouth-to-mouth resuscitation.				
		wed before being removed. Urgent hospital				
	treatment is likely to be needed.					

Page 3 of 31

SAFETY DATA SHEET

(according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA

Revision date: 01.05.2020 Version 4.2

	Revision date: 01.05.2020 Version 4.2			
AZOT				
Following eye contact:	Immediately flush eyes with copious amounts of tepid water for at least 15 minutes. If irritation, pain, swelling, excessive tearing, or light sensitivity persists, the patient should be seen in a health care facility and referral to an ophthalmologist considered.			
Following skin contact:	Immediately flush exposed area with copious amounts of tepid water for at least 15 minutes followed by washing area thoroughly with soap and water. The patient should be seen in a health care facility if irritation or pain persists.			
Following ingestion:	Call a physician. If conscious, give the patient milk or water to drink immediately. Do not induce vomiting.			
Following inhalation:	Move patient to fresh air. Monitor for respiratory distress. If cough or difficulty in breathing develops, evaluate for respiratory tract irritation, bronchitis, or pneumonitis. If trained to do so, administer supplemental oxygen with assisted ventilation as required. Administer artificial respiration if patient is not breathing.			
Self-protection for the first aider:	None			
4.2 Most important symptoms and effec	ts, both acute and delayed			
	Eye contact: Exposure to the eyes may cause temporary or permanent blindness. Eye exposure may result in conjunctivitis, lacrimation and/or corneal irritation. Total corneal epithelial loss may occur. Skin contact: Ammonia is a severe irritant of the skin. Skin exposure to high			
Acute effects/	concentrations of the gas may cause burning and blistering. Contact with liquid may cause severe skin burns. Concentrated ammonia may produce liquefaction necrosis and deep penetrating burns.			
Delayed effects	Inhalation: Ammonia is toxic and a severe irritant of the respiratory tract. It may cause a running nose, coughing, chest pain, cessation of respiration and death. It may cause severe breathing difficulties, which may be delayed in onset. Bronchospasm, laryngitis, tracheitis, wheezing, dyspnea, and laryngeal stridor may be noted. Mucosal burns to the tracheobronchial tree, pulmonary edema and associated hypoxemia frequently occur following exposure to concentrated ammonia.			
4.3 Indication of any immediate medical There is no specific antidote. Treat sympto				

SECTION 5: FIRE-FIGHTING MEASURES

5.1 Extinguishing media	
Suitable extinguishing media:	Fine water spray, normal foam, dry agent (carbon dioxide, dry chemical powder). Stopping the flow of gas rather than extinguishing the fire is usually the best procedure to follow when escaping gas is burning. Water spray can be used to bring down the vapour but should not be sprayed on pools of liquid ammonia.
Unsuitable extinguishing media:	None

5.2 Special hazards arising from the substance or mixture

Formation of explosive gas mixtures in air. Explosion hazard. Heat of fire can build pressure in container and cause it to rupture. Nitrogen oxides, hydrogen, nitrogen can be emitted in case of fire.

5.3 Advice for fire fighters

Do not get water inside container. Move container from fire area if you can do it without risk. Apply cooling water to sides of containers which are exposed to flames until well after fire is out. Stay away from ends of tanks due to exploding potential when tanks are exposed to fire. Isolate area until gas has dispersed. Use water spray or foam to control vapour. Positive pressure self-contained breathing apparatus (SCBA) should be used when there is a potential for inhalation of vapours and/or fumes. Chemical protective clothing that is safe for use with ammonia involved in a fire should be worn.

SECTION 6: ACCIDENTAL RELEASE MEASURES

6.1 Personal precautions, protective equipment and emergency procedures

6.1.1 For non-emergency personnel

Protective equipment: Gas masks with cartridges for ammonia.

<u>Emergency procedures</u>: Stop leak if you can do so without risk. Keep unnecessary people away, isolate hazard area and deny entry. Stay upwind, out of low areas, and ventilate closed spaces before entering. Evaluate the affected area to determine whether to evacuate or shelter-in-place by taping windows and doors, shutting off outside air intakes (attic fans, etc.), and placing a wet towel or cloth over the face (if needed).

6.1.2 For emergency responders:

With proper training, self-contained breathing apparatus (SCBA) and structural firefighter's protective clothing used in conjunction with water spray will provide limited protection in outdoor releases for short-term exposure. Fully encapsulating, vapor-protective clothing should be worn for spills and leaks with no fire. Use water spray or foam to control vapors. Mixing of water and liquid ammonia will increase vaporization rate. Do not put water on liquid ammonia unless more than 100 volumes of water are available for each volume of liquid ammonia.

6.2 Environmental precautions

Discard any product, residue, disposable container, or liner in an environmentally acceptable manner, in full compliance with federal, state, and local regulations.

6.3 Methods and material for containment and cleaning up

Page 4 of 31

SAFETY DATA SHEET

(according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA

Revision date: 01.05.2020 Version 4.2

AZOT

6.3.1 For containment.

GAS: Do NOT spray water directly on the leak or ammonia container. For a small gas leak, increase ventilation and allow gas to vent to a safe area.

LIQUID: Use water spray to control vapours. Avoid any contact with liquid product. Stop the leakage. The excess of the product should be drained into suitable container. Allow the vapours to disperse. For small liquid spills, increase ventilation and allow the liquid to volatilise to safe area. For large spills, keep away from sources of ignition and sparks. Increase ventilation of spilled area. Self-contained breathing apparatus (SCBA) and appropriate protective clothing should be worn. 6.3.2 For cleaning up:

GAS: For larger gas leaks, use fire hoses equipped with fog nozzles to disperse gas down-wind.

LIQUID: Wash the affected area with great amount of water.

6.3.3 Other information: None

See section 8 for personal protective equip	SECTION 7: HANDLING AND STORAGE
7.1 Precautions for safe handling	
Protective measures:	Use proper personal protective equipment when working with or around ammonia. Avoid contact with eyes, skin and clothing. Safety shower and eyewash fountain should be provided in the ammonia handling area.
Measures to prevent fire:	Keep away from sources of ignition.
Measures to prevent aerosol and dust generation:	Local exhaust ventilation should be provided.
Measures to protect the environment:	Prevent waste from contaminating the surrounding environment.
Advice on general occupational hygiene:	Do not eat, drink or smoke in work areas. Remove contaminated clothing and protective equipment before entering eating areas. Wash hands, forearms and face thoroughly after handling chemical products, before eating, smoking and using the lavatory and at the end of the working period. Appropriate techniques should be used to remove potentially contaminated clothing.
	Wash contaminated clothing before reusing
7.2 Conditions for safe storage, includin	
Technical measures/ Storage conditions:	Use transportable pressure equipment. Store in a well-ventilated area. Avoid heat, flames, sparks and other sources of ignition.
Packing materials:	Use dedicated containers - do not rinse.
Requirements for storage rooms and vessels: Storage class:	2A
Further information on storage conditions:	None
Incompatible products:	All strong acids and alkali, halogens, perchlorate, chloric acid, chlorine monoxide, chlorites, nitrogen tetroxide, compounds of chrome, selenium, silver, gold compounds, zinc, platinum, tin, sulphur, acetaldehyde, acrolein, boron, hydrogen, potassium and its salts, picric acid, nitrilchloride, nitrogen oxides, nitric acid, hydrazine.
7.3 Specific end use(s):	None
SECTION	8: EXPOSURE CONTROLS / PERSONAL PROTECTION
8.1 Control parameters	
8.1.1 National occupational exposure limit	values: Not available
8.1.2 National biological limit values: Not a	vailable
8.1.3 PNEC (Predicted No Effect Concentry	ation):

8.1.3 PNEC (Predicted No Effect Concentration):		
Environmental protection target	PNEC	
Aqua – freshwater	0.0011 mg/L	
Aqua - marine water	0.0011 mg/L	
Aqua – intermittent releases	0.089 mg/L	
Sediment	No exposure expected	
Soil	No exposure expected	
Sewage treatment plant	No exposure expected	
Food chain: oral (secondary poisoning)	No exposure expected	
Air	No exposure expected	

Page 5 of 31

SAFETY DATA SHEET (according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA

Revision date: 01.05.2020 Version 4.2

- C	HE	RK	A 1	1 Y
			~	-
		1	1	
-	۰.	• •	-	

	ACUTE (Systemic effects)					
	Route Derived No Effect Level (DNE		ect Level (DNEL)			
	Roule	Workers	General population			
Or	ral	Not quantifiable	6.8 mg/kg bw/d			
De	ermal	68 mg/kg bw/d	68 mg/kg bw/d			
Inf	halation	47.6 mg/m ³	23.8 mg/m ³			
		ACUTE (Local effects)				
	Route	Derived No Effe	ect Level (DNEL)			
	Noule	Workers	General population			
Or	ral	Not quantifiable	Not quantifiable			
De	ermal	Not quantifiable	Not quantifiable			
Inf	halation	36 mg/m³	7.2 mg/m ³			
	LON	G TERM (Systemic eff Derived No Effe	ects) ect Level (DNEL)			
	Roule	Workers	General population			
Or	ral	Not quantifiable	6.8 mg/kg bw/d			
De	ermal	68 mg/kg bw/d	68 mg/kg bw/d			
Inf	halation	47.6 mg/m ³	23.8 mg/m ³			
			ato)			
		NG TERM (Local effe	ect Level (DNEL)			
	Route	Workers	General population			
	rol	Not quantifiable	Not augotificable			
Or		Not quantifiable	Not quantifiable			
De	ral ermal halation	Not quantifiable Not quantifiable 14 mg/m ³	Not quantifiable Not quantifiable 2.8 mg/m ³			

8.1.5 Monitoring procedures: Not available

Page 6 of 31

SAFETY DATA SHEET (according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA

Revision date: 01.05.2020 Version 4.2

AZOT

8.2 Exposure controls

6.2. TAppropriate engineering controls.	
engineering controls (containment, LEV) a Technical measures to prevent exposure	prevent exposure during identified uses: Exposure should be limited using appropriate and protective equipment (gloves, goggles/visor, protective clothing) as appropriate. <u>re</u> : Engineering controls should be maintained to keep ammonia concentrations within r protection will be required to reduce inhalation exposure. Water sources such as showers, are acceptable.
8.2.2 Personal protection equipment:	
8.2.2.1 Eye and face protection:	Face-fitting chemical safety goggles. Also, use a face shield when there is a risk of splashes. The protective items must meet the requirements of EN 166.
8.2.2.2 Skin protection: Hand protection:	Use protective gloves which are made of polyacrylonitrile rubber, latex, poly(vinyl chloride) or poly(vinyl alcohol). The gloves must satisfy the requirements of Directive 89/686/EEC and/or standard EN 374. Gloves must provide antistatic performance if they are to be used in an explosion hazard zone.
Other skin protection:	Wear protective clothing. Use protective boots (e.g. made of neoprene). Protective clothing, gloves and boots must provide antistatic performance if they are to be used in an explosion hazard zone. In emergency situations, or when the workplace concentration is not known, use the completely isolating personal protection controls (gas-tight full protective suit and self-contained breathing apparatus).
8.2.2.3 Respiratory protection:	Use appropriate gas mask and suitable protective equipment. Keep self contained breathing apparatus readily available for emergency use.
8.2.2.4 Thermal hazards:	Not available
8.2.3 Environmental exposure controls:	Enclosed systems are provided for all operations, inclusive of sampling. Forced flow ventilation protects workplaces against high ammonia concentrations. Ammonia is stored in enclosed and leak-proof tanks and tank vehicles, and it is transported under the same conditions. If ammonia is released to atmosphere, to water reservoirs, to soil and/or to sewage systems, notify the competent governmental agency.
SEC	TION 9: PHYSICAL AND CHEMICAL PROPERTIES
9.1 Information on basic physical and o	
Appearance:	Anhydrous ammonia is a colourless gas at room temperature and pressure (liquefied under pressure)
Odour:	Specific, extremely pungent.
Odour threshold:	5 ppm
pH:	Not available
Melting point/Freezing point:	-77,7 °C
Initial boiling point and boiling range:	-33,33 °C
Flash-point:	The endpoint is not applicable as the substance is an inorganic gas; Aqueous solutions of ammonia did not show any flash point
Evaporation rate:	Not available
Flammability (solid, gas):	Flammable
Upper/lower flammability or explosive limits	16 % / 25 %
Vapour pressure:	8611 hPa at 20 ºC
Vapour density:	Not available
Relative density:	Not applicable. The substance is a gas at room temperature: this endpoint is not relevant. The density of ammonia is calculated to be 0.717 kg/m ³ at NTP (normal temperature and pressure); 0.769 kg/m ³ at STP (standard temperature and pressure).
Solubility in water:	482 g/L at 25 °C, 531 g/L at 20 °C. The substance is very soluble in water
Partition coefficient n-octanol/water:	Not applicable. As the substance is inorganic
Auto-ignition temperature	The auto flammability of anhydrous ammonia was measured to be 651°C
Decomposition temperature:	above 400 °C
Viscosity:	The substance is a gas at room temperature: this endpoint is not relevant. However the viscosity of anhydrous ammonia was measured to 0,475; 0,317; 0,276 & 0,255 centipoises (mPa.s) at -69, -50, -40 & -33.5°C respectively.

Page 7 of 31

SAFETY DATA SHEET

(according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA

Revision date: 01.05.2020 Version 4.2

AZOT

AZOT	
Explosive properties	Non explosive (anhydrous ammonia is not predicted to be explosive based on a theoretical assessment of its chemical structure) NB: Risk of explosion in case of contact or reaction with some substances (hypochlorites,
	mercury, silver). When ammonia is mixed with such gases as: oxygen, chlorine, bromine or iodine; its explosion may be initiated by direct sunlight or by UV radiation.
Oxidising properties	No (As the substance does not contain any oxygen or halogen atoms it is not expected to be an oxidising agent).
9.2 Other information	
	SECTION 10: STABILITY AND REACTIVITY
10.1 Reactivity	
Stable under recommended storage	ge and handling conditions (see section 7, handling and storage).
10.2 Chemical stability	
Stable under recommended stora	ge and handling conditions (see section 7, handling and storage); hazardous polymerisation will
not occur.	
10.3 Possibility of hazardous rea	
chlorine trifluoride, chlorates, chlor	ts from its reactions with: acetaldehyde, acrolein, boron trifluoride, bromine, chlorine, chloric acid, osilane, ethylene oxide, fluorine, hydrogen bromide, hypochlorous acid, iodine, nitric acid, nitrogen syl chloride, phosphorus pentoxide, picric acid, phosphorus and phosphorus hydride, arsenic and sulphur dichloride.
	inc and their alloys, especially under humid conditions.
10.4 Conditions to avoid	
Incompatible materials, open flame	e sources, heat sources / heat - risk of bursting.
10.5 Incompatible materials	
	e or violent reactions with interhalogens, strong oxidisers, nitric acid, fluorine and nitrogen oxide.
	re mixtures with air and hydrocarbons, ethanol and silver nitrate and chlorine. Explosive products
are formed by the reaction of ami also Clause 10.3.	monia with silver chloride, silver oxide, bromine, iodine, gold, mercury and tellurium halides. See

10.6 Hazardous decomposition products

Nitrogen oxides, hydrogen

Hydrogen is released upon heating above 454 °C. The decomposition temperature may be lowered to 300 °C by contact with certain metals such as nickel. At 690 °C or in the presence of an electric spark, ammonia decomposes into nitrogen and hydrogen gases, which may form a flammable mixture in the air.

Under normal conditions of storage and use, hazardous decomposition products should not be produced.

SECTION 11: TOXICOLOGICAL INFORMATION

11.1 Information on toxicological effects

11.1.1 Acute tox	icity					
Route of exposure	Species	Method		Effective dose	Exposure time	Results
inhalation	rat male	Asse	Assessment of acute inhalation toxicity in the rat		1 hour	LC50: 9850 mg/m³ air
oral	rat (Wistar) male	gavage equivalent or similar to OECD Guideline 401 (Acute Oral Toxicity)		_	_	LD50: 350 mg/kg bw (male) (Probit analysis)
dermal	No data					
11.1.2 Serious e	ye damage/irrita	tion	Highly irritating			
11.1.3 Skin corro	osion/irritation		Corrosive			
11.1.4 Respiratory or skin sensitization		Not sensitising				
11.1.5 Germ cell mutagenicity		Negative				
11.1.6 Carcinogenicity:		There is no evidence that the substance is carcinogenic				
11.1.7 Reproductive toxicity:			The available data do not indicate that ammonia is a reproductive or developmental toxin			
11.1.8 STOT-sin	gle exposure		Not available			
11.1.9 STOT-repeated exposure		Not available				
11.1.10 Aspiration hazard		Not relevant				
			SECTION 12: ECOLOGICAL	INFORMATIO	N	
12.1 Toxicity						
Fish (freshwater, short-term):		LC 50: 0.068 mg/L				
Fish (long-term):		LC50 for freshwater fish: 0.89 mg/L un-ionised ammonia				

Page 8 of 31

SAFETY DATA SHEET (according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA

Revision date: 01.05.2020 Version 4.2

ALOI		and an increase of the state	D					
Freshwater invertebrates (short-term):	EC50/LC50 for freshv LC50=101 mg/L (48 h	vater invertebrates: 110 a; <i>Daphnia</i> magna)) mg/L					
Freshwater invertebrates (long-term):	EC10/LC10 (NOEC):							
Freshwater algae:	EC50/LC50: 2700 mg	/L						
Terrestrial plants:	not predicted	a component of fertilis	sers; therefore toxicity	to terrestrial plants is				
Soil micro-organisms:	Not predicted Toxicity to soil micro cycle	organisms is unlikely:	ammonia is an intrin	sic part of the nitrate				
Birds:	No data are available A waiver is proposed	on grounds of exposur	e					
Mammals:	Not available	× .						
12.2 Persistence and degradability								
Abiotic degradation:								
Hydrolysis:	Not predicted. In aqueous solution, a	ammonia is in equilibriu	Im with the ammonium	ion.				
Excretion:	Ammonia is rapidly d	letoxified in mammals sequently excreted (as	by conversion to urea	a by the urea cycle in				
Phototransformation/photolysis:		, , , , , , , , , , , , , , , , , , , ,	,	0				
Phototransformation in air:		n and reaction with ph e major pathways for th						
Phototransformation in water:	Not available							
Phototransformation in soil:	Not available							
Biodegradation:								
Biodegradation in water:	Readily biodegradable	9						
Biodegradation in sediments:		and none are required						
Biodegradation in soil:	Ammonia is rapidly mineralisation	biodegraded in soi	il by the process o	of ammonification or				
12.3 Bioaccumulative potential								
Ammonia does not bioaccumulate and is a								
12.4 Mobility in soil: In ground water, am ion on clay minerals, or bacterial oxidation	to nitrate, both process			tion of the ammonium				
12.5 Results of PBT and vPvB assessm								
According to Annex XIII of Regulation (EC inorganic.	C) No 1907/2006, no P	BT and vPvB assessn	nent has been conduc	ted since ammonia is				
12.6 Other adverse effects: None								
12.7 Additional information: None								
	SECTION 13: DISPOS	AL CONSIDERATION	S					
13.1 Waste treatment methods:	·							
13.1.1 Product / Packaging disposal:	Dispose of according	to local authority regula	ations.					
Waste codes / waste designations according to LoW (Commission Decision 2001/118/EC):	06 10 99 Wastes not	otherwise specified						
13.1.2 Waste treatment-relevant information:		sed of in line with local prior treatment by STF	Waste must be disposed of in line with local regulations and should not be discharged to					
13.1.3 Sewage disposal-relevant information:	ounded water without		·.					
		uld be made in accorda						
13.1.4 Other disposal recommendations:								
13.1.4 Other disposal recommendations:	Sewage disposal sho None		ance with local authorit					
13.1.4 Other disposal recommendations:	Sewage disposal sho None	uld be made in accorda	ance with local authorit	-				
13.1.4 Other disposal recommendations: 13.1.4 Other disposal recommendations: 14.1 UN number	Sewage disposal sho None SECTION 14: TRANS	uld be made in accorda	ance with local authorit	y regulations.				
	Sewage disposal sho None SECTION 14: TRANS ADR/RID	uld be made in accorda PORT INFORMATION ADN/ADNR	ance with local authorit	y regulations.				
14.1 UN number	Sewage disposal sho None SECTION 14: TRANS ADR/RID UN1005 Ammonia,	uld be made in accorda PORT INFORMATION ADN/ADNR	ance with local authorit IMDG UN 1005 Ammonia,	y regulations.				
14.1 UN number 14.2 UN proper shipping name	Sewage disposal sho None SECTION 14: TRANS ADR/RID UN1005 Ammonia, anhydrous	uld be made in accorda PORT INFORMATION ADN/ADNR	IMDG UN 1005 Ammonia, anhydrous	y regulations.				

Page 9 of 31

SAFETY DATA SHEET (according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA

Revision date: 01.05.2020 Version 4.2

14.6 Special precautions for user				
	Not available	Not available	Not available	Not available
Additional information	Classification code: 2TC Label 2.3: toxic substance. Label 8: corrosive substance.	-	EmS number: 2-08 Label FS: 2-03 Marine pollutant: No	Transport forbidden on passenger aircraft - cargo aircraft only
14.7 Transport in bulk according to Anna Not available		and the IBC Code		
	SECTION 15: REGULA		N	
15.1 Safety, health and environmental re				
EU Regulations	guiadeli regieladeli er			
Authorisations and\or restrictions on use: Authorisation: EU Regulation (EC) No. 1907/2006 (REACH) Annex XIV - List of substances subject to authorisation Substances of very high concern	None of the componer	nts are listed		
Restrictions on use: Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles Other EU Regulations:	Not applicable			
Annex I of Seveso II Directive 96/82/EC:				
Dangerous substances	CAS number	Qualifyi	ing quantity (tonnes) for	the application of
		Lower tier	Upp	er tier
Anhydrous ammonia	7664-41-7	50	2	200
National regulations (country): Not availabl				
15.2 Chemical safety assessment.	In accordance with RE out for this substance.	EACH Article 14, a C	hemical Safety Assessr	nent has been carried
The information provided in this safety da		e best of our knowle		elief at the date of its
publication. The information given is design and release and is not to be considered designated and may not be valid for such in the text.	a warranty or quality s	pecification. The info	ormation relates only to	ansportation, disposal, the specific material
publication. The information given is desig and release and is not to be considered designated and may not be valid for such	 a warranty or quality s material used in combin v. 3.0: Changes were data sheets (version 1 v. 3.1: Changes were 	pecification. The info nation with any other made to comply with .1) made to comply with	ormation relates only to materials or in any proo the Guidance on the co Article 61 (CLP)	ansportation, disposal, the specific material ceed, unless specified mpilation of safety
publication. The information given is design and release and is not to be considered designated and may not be valid for such in the text.	 a warranty or quality s material used in combin v. 3.0: Changes were data sheets (version 1 v. 3.1: Changes were v. 4.0: Changes were 	pecification. The info nation with any other made to comply with .1) made to comply with made taking into acc	ormation relates only to materials or in any pro- the Guidance on the co Article 61 (CLP) ount 5 th and 8 th ATP to 0	ansportation, disposal, o the specific material ceed, unless specified mpilation of safety CLP
 publication. The information given is design and release and is not to be considered designated and may not be valid for such in the text. 16.1 Indication of changes: v. 3.0: Page header; 1.1; 1.2; 1.3; 1.4; 2.1; 15.1 v. 3.1: Page header; 2.1.2; 2.2.2; 16.2 v. 4.0: Page header; 1.3; 2.2.1 v. 4.1: Page header; 1.3 	a warranty or quality s material used in combin v. 3.0: Changes were data sheets (version 1 v. 3.1: Changes were v. 4.0: Changes were 2.2; 2.3; 3.1; 4.1; 4.3; 6	pecification. The infonation with any other made to comply with .1) made to comply with made taking into acc .1; 6.3; 7.1; 7.2; 8.1; 8	ormation relates only to materials or in any proc the Guidance on the co Article 61 (CLP) <u>ount 5th and 8th ATP to 0</u> 3.2; 9.1; 11.1; 12.2; 12.4	ansportation, disposal, o the specific materia ceed, unless specified mpilation of safety CLP 4; 12.6; 12.7; 13.1;

SAFETY DATA SHEET (according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA

Revision date: 01.05.2020 Version 4.2

ĂŽŎŤ
BC Code - International Code for the Construction and Equipment of Ships Carrying Dangerous Chemicals in Bulk
IMDG - International Maritime Dangerous Goods
IUPAC - International Union of Pure and Applied Chemistry
LC50 - Lethal Concentration
LD50 - Lethal Dose
LEV - local exhaust ventilation
LoW - List of Wastes
MARPOL - International Convention for the Prevention of Pollution From Ships
OECD - Organization for Economic Co-operation and Development
PBT - Persistent, bioaccumulative, toxic chemical
PJSC - Public Joint-Stock Company
REACH - Registration, Evaluation, Authorisation and Restriction of Chemicals
RID - International Rule for Transport of Dangerous Substances by Railway
STOT - Specific Target Organ Toxicity
STP - sewage treatment plant
UN - United Nations
vPvB - very persistent, very bioaccumulative
16.3 Key literature references and sources for data: CSR (Chemical Safety Report), Guidance on safe use etc.
16.4 Training advice: In accordance with the local regulations
16.5 Further information: None

Page 11 of 31

SAFETY DATA SHEET

(according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA

Revision date: 01.05.2020 Version 4.2

AZOT

Exposure Scenario No. 1: Use of ammonia as an intermediate in the chemicals industry

1.1 Exposure Scenario

Ammonia is used by the chemicals industry to manufacture a range of other substances including: nitric acid, alkalis, dyes, pharmaceuticals, cosmetics, vitamins, synthetic textile fibres and plastics.

Ammonia is used as an intermediate in the synthesis of a number of chemicals. It is used in the manufacture of nitric acid (HNO₃) which is used in making explosives such as TNT (2,4,6-trinitrotoluene); nitro-glycerine (which is also used as a vasodilator) and PETN (pentaerythritol nitrate). Ammonia is also used in the synthesis of alkalis: sodium hydrogen carbonate (sodium bicarbonate; NaHCO₃), soda ash (sodium carbonate, Na₂CO₃), hydrogen cyanide (hydrocyanic acid; HCN) and hydrazine (N₂H₄) used in rocket propulsion systems.

Ammonia is used to manufacture explosives such as ammonium nitrate (NH_4NO_3) . It is also used as an intermediate in the synthesis of dyes, and synthetic 'man-made' fibres such as nylon, rayon and acrylics. It is also used in the manufacture of plastics such as phenolics and polyurethanes.

Ammonia is used in the manufacture of drugs such as sulphonamide which inhibit the growth and multiplication of bacteria that require *p*-aminobenzoic acid (PABA) and for the biosynthesis of folic acids, antimalarials and vitamins (e.g. B vitamins: nicotinamide and thiamine).

Ammonia is also used in the production of ammonium and nitrate salts used in fertilisers.

1.1.1 Description of Activities and Processes Covered in the Exposure Scenario

Processes using ammonia as an intermediate are carried out at large chemical manufacturing facilities. Due to the large size of these facilities, vessels and reactors for chemical synthesis and processing are housed outdoors. Some processes are carried out indoors. Processes are continuous or batch and are carried out in closed systems.

Most chemical manufacturing processes and units are operated automatically by a small number of operators located in separate control rooms. Operators may also carry out routine 'field' inspections around the facility to check that equipment is operating correctly. Other manual operations in the field may also be undertaken such as: preparation of equipment for mechanical or other work (e.g. maintenance), or taking samples or measurements. Workers unload ammonia stored in spheres onto tankers. Tanker unloading generally takes place in the open air and involves connecting or disconnecting pipes or hoses and opening or closing valves.

1.1.2 Operational Conditions Related to Frequency and Duration of Use

Chemical processes using ammonia as an intermediate are closed, continuous or batch processes which can run for long periods without interruption indoors or outdoors, for up to 24 hours/day, 330-360 days per year. Operational control and some field operations such as inspection tours are therefore also carried out continuously (e.g. in shifts covering 24 hour periods daily, without interruption of the processes). Although operators generally work standard shifts of 8 hours/day and a normal working week, with production continuing at weekends, longer shifts up to 12 hours /day can also be carried out. Operators will typically work for 220 days/year. During a typical shift, operators may spend 80 % of their time in a control room and 20 % of their time in the field. Field operation tours can be up to 6 hours/shift, every day. Sampling (10 minutes/sample) for quality control is routinely carried out. Other activities such as maintenance work, are carried out intermittently. Workers also unload ammonia from transportation vehicles into containers. All processes are supervised.

1.1.3 Risk Management Measures

Chemical processes using ammonia as an intermediate involve special equipment and high integrity contained systems with little or no potential for worker exposure. These facilities are usually housed outdoors, with workers being segregated in separate control rooms with no direct contact with chemical processing units The potential for industrial workers to be exposed to ammonia during these processes is therefore negligible since they are located in separate control rooms.

Workers may potentially be exposed to ammonia when conducting field activities (e.g. when operating valves, pumps or tanks etc). All operations are performed in a closed system. Pipelines and vessels are sealed and insulated and sampling is carried out with a closed sample loop. Extract ventilation is provided at openings and points where emission may occur. Anhydrous ammonia is stored in closed containers and tanks. Ammonia is transferred under containment. A good standard of general or controlled ventilation is applied when maintenance activities are carried out. Personal protective clothing (e.g. face/eye protection, helmet, gloves, boots and protective overalls) is worn when any potential contact may arise.

All technological devices have a proper quality certification, and are regularly controlled and maintained to avoid the uncontrolled discharge of ammonia.

Good occupational hygiene and exposure control measures are implemented to minimise the potential for worker exposure. Workers involved in the manufacture, sampling and transfer of anhydrous ammonia to road tankers are well-trained in these procedures and use appropriate protective equipment.

1.2 Exposure Estimation

1.2.1 Workers Exposure

The assessment of worker exposure to anhydrous and aqueous forms of ammonia used as an intermediate in chemical synthesis was carried out for processes relevant to this scenario as identified by PROC codes reflecting: use and storage of ammonia in closed systems with no likelihood of exposure (PROC 1), use in closed, continuous processes with occasional controlled exposure (PROC 2), formulation using closed batch processes (PROC 3), use in batch or other processes (PROC 4), mixing or blending in a batch process (PROC 5), maintenance and clean-down (PROC 8a), transfer (PROC 8b), transfer of ammonia into containers (PROC 9) and analysis of samples (PROC 15). A screening-level (Tier 1) assessment of worker exposure was carried out using the ECETOC Targeted Risk Assessment (TRA) model. The ECETOC TRA was used to predict dermal exposures (expressed as a daily systemic dose in mg/kg bw) and inhalation exposure concentrations (expressed as an airborne concentration in mg/m³) associated with each process defined by PROC codes.

Exposure to workers was assessed taking into account different operational conditions that may be associated with the use of

SAFETY DATA SHEET

(according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA

Revision date: 01.05.2020 Version 4.2

AZOT

ammonia as an intermediate in chemical synthesis and the impact of different exposure control measures. Exposures were determined for task durations of 1- 4 hours or >4 hours and assuming that process are carried out either outdoors, indoors without use of local exhaust ventilation (LEV) or indoors with the use of LEV. To reflect the use of personal protective equipment (PPE), dermal exposures were determined assuming either no gloves or gloves affording 90% protection of the hands are worn. To reflect the use of respiratory protective equipment (RPE), inhalation concentrations were determined assuming either no RPE or RPE affording 95% protection is worn.

The ECETOC TRA model uses a simple algorithm to determine dermal exposures that does not take the physical-chemical properties of a substance into account. The same dermal exposure where therefore predicted for anhydrous and aqueous forms of ammonia. Parameters used in the ECETOC TRA model to assess inhalation exposures were: molecular weight $(35g.mol^{-1} and 17 g.mol^{-1} for aqueous and anhydrous forms respectively and vapour pressure (the vapour pressure of anhydrous forms of ammonia is 8.6 x 10⁵ Pa at 20^oC, whereas the vapour pressure of aqueous ammonia solution between 5 and 25% w/w ranges from 5 x 10³ Pa to 4x10⁴ Pa at 20^oC. Systemic dermal exposures have been determined for a worker with bodyweight 70 kg.$

1.2.2 Acute/Short-term and Long-term Exposure

Potential systemic dermal exposures and inhalation exposure concentrations predicted by the ECETOC TRA model for processes associated with the use of ammonia in chemical synthesis are shown in Tables 87 and 88 respectively. ECETOC predicts a daily systemic dose following dermal exposure and a typical daily inhalation exposure concentration and does not specifically predict acute (short-term) and chronic (long-term) exposures.

 Table 1.1 Dermal exposures to anhydrous or aqueous (in preparations of 5-25 % w/w) ammonia predicted using the ECETOC

 TRA model for industrial workers during chemical synthesis

Description of activity	PROC	Exposure assumptions				Estimated Exposure Concentration mg/kg bw/d				
		Duration		Use of vent	ilation		No glo worn	oves		ves worn (90% uction)
Used in a closed process, no likelihood of exposure: Storage (closed bulk or container)	PROC 1	1-4 hrs or	>4 hrs	Outdoors /Ir LEV	ndoors witho	ut	0.34		0.03	3
Use in a closed, continuous process with	PROC 2	1-4 hrs or	>4 hrs	Outdoors /Ir LEV	idoors witho	ut	1.37		0.14	1
occasional controlled exposure (e.g. sampling)	11002	1-4 hrs or	>4 hrs	Indoors with	LEV		0.14		0.01	
Use in closed batch process (synthesis or	PROC 3	1-4 hrs or	>4 hrs	Outdoors / I LEV	ndoors witho	out	0.34		0.03	3
formulation)		1-4 hrs or	>4 hrs	Indoors with			0.03		<0.0)1
Use in batch process (synthesis) where	PROC 4	1-4 hrs or	>4 hrs	Outdoors / I LEV	ndoors witho	out	6.86		0.69)
opportunity for exposure arises		1-4 hrs or	>4 hrs	Indoors with	LEV		0.69		0.07	7
Mixing or blending in	PROC 5	1-4 hrs or	>4 hrs	Outdoors / I LEV	ndoors witho	out	13.71		1.37	7
batch process		1-4 hrs or	>4 hrs	Indoors with	LEV		0.07		0.01	
Maintenance, clean down	PROC 8a	1-4 hrs or	>4 hrs	Outdoors / I LEV	ndoors witho	out	13.71		1.37	7
		1-4 hrs or	>4 hrs	Indoors with			0.14		0.01	
Transfer (charging/discharging)		1-4 hrs or	>4 hrs	Outdoors / I LEV	ndoors witho	out	6.86		0.69)
from/to vessels or large containers at dedicated facilities	PROC 8b	1-4 hrs or >4 hrs		Indoors with LEV		0.69		0.07	7	
Transfer into small	PROC 9	1-4 hrs or	>4 hrs	Outdoors / I LEV	ndoors witho	out	6.86		0.69)
containers		1-4 hrs or	>4 hrs	Indoors with			0.69		0.07	7
Quality control in a	PROC 15	1-4 hrs or	>4 hrs	Outdoors / I LEV	ndoors witho	out	0.34		0.03	}
laboratory		1-4 hrs or	-	Indoors with			0.03		<0.0	
Table 1.2 Inhalation exusing the ECETOC TR						ations	of 5-25			-
					Anhydrou	s amr	nonia	Aque w/w)		ammonia (5-25%
Description of activity	PROC	Exposure a	ssumptio	ons	Estimated			oncent	ratio	
		Duration	Use of	ventilation	No RPE		(95% Iction)	No R	PE	RPE (95% reduction)
Used in a closed process, no likelihood of	PROC 1	1-4 hrs or >4 hrs	Outdoor	rs	0.00	NA		0.01		NA

Page 13 of 31

SAFETY DATA SHEET (according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA

Revision date: 01.05.2020 Version 4.2

exposure: Storage		1-4 hrs or					
(closed bulk or container)		>4 hrs	Indoors without LEV	0.01	NA	0.01	NA
		>4hrs	Outdoors	24.79	1.24	30.63	1.53
Use in a closed,		>4hrs	Indoors without LEV	35.42	1.77	43.75	2.19
continuous process with occasional controlled	PROC 2	>4hrs	Indoors with LEV	3.53	0.18	4.38	0.22
exposure (e.g. sampling)		1-4 hrs	Outdoors	14.88	0.74	18.38	0.92
		1-4 hrs	Indoors without LEV	22.25	1.06	26.25	1.31
		1-4 hrs	Indoors with LEV	2.13	0.11	2.63	0.13
		>4hrs	Outdoors	49.58	2.48	61.25	3.06
		>4hrs	Indoors without LEV	70.83	3.54	87.5	4.38
Use in closed batch process (synthesis or	PROC 3	>4hrs	Indoors with LEV	7.08	0.35	8.75	0.44
formulation)		1-4 hrs	Outdoors	29.75	1.49	36.75	1.84
		1-4 hrs	Indoors without LEV	42.5	2.13	52.50	2.63
		1-4 hrs	Indoors with LEV	4.25	0.21	5.25	0.26
		>4hrs	Outdoors	49.58	2.48	61.25	3.06
Use in batch process		>4hrs	Indoors without LEV	70.83	3.54	87.5	4.38
(synthesis) where	PROC 4	>4hrs	Indoors with LEV	7.08	0.35	8.75	0.44
opportunity for exposure arises	11001	1-4 hrs	Outdoors	29.75	1.49	36.75	1.84
		1-4 hrs	Indoors without LEV	42.5	2.13	52.5	2.63
		1-4 hrs	Indoors with LEV	4.25	0.21	5.25	0.26
		>4hrs	Outdoors	123.96	6.20	153.13	7.66
		>4hrs	Indoors without LEV	177.08	8.85	218.75	10.94
Mixing or blending in	PROC 5	>4hrs	Indoors with LEV	17.71	0.89	21.88	1.09
batch process		1-4 hrs	Outdoors	74.38	3.72	91.88	4.59
batch process		1-4 hrs	Indoors without LEV	106.25	5.31	131.25	6.56
		1-4 hrs	Indoors with LEV	10.63	0.53	13.13	0.66
		>4hrs	Outdoors	123.96	6.20	153.13	7.66
		>4hrs	Indoors without LEV	177.08	8.85	218.75	10.94
Maintenance, clean down	PROC	>4hrs	Indoors with LEV	17.71	0.89	21.88	1.09
	8a	1-4 hrs	Outdoors	74.38	3.72	91.88	4.59
		1-4 hrs	Indoors without LEV	106.25	5.31	131.25	6.56
		1-4 hrs	Indoors with LEV	10.63	0.53	13.13	0.66
		>4hrs	Outdoors	74.38	3.72	91.88	4.59
Transfer of ammonia		>4hrs	Indoors without LEV	106.25	5.31	131.25	6.56
(charging/discharging) from/to vessels or large	PROC	>4hrs	Indoors with LEV	3.19	0.16	3.94	0.20
containers at dedicated	8b	1-4 hrs	Outdoors	44.63	2.23	55.13	2.76
facilities		1-4 hrs	Indoors without LEV	63.75	3.19	78.75	3.94
		1-4 hrs	Indoors with LEV	1.91	0.1	2.36	0.12
		>4hrs	Outdoors	99.17	4.96	122.50	6.13
		>4hrs	Indoors without LEV	141.67	7.08	175.00	8.75
Transfer into small	PROC 9	>4hrs	Indoors with LEV	14.17	0.71	17.50	0.88
containers		1-4 hrs	Outdoors	59.50	2.98	73.50	3.68
		1-4 hrs	Indoors without LEV	85.00	4.25	105.00	5.25
		1-4 hrs	Indoors with LEV	8.5	0.43	10.50	0.53
		>4hrs	Indoors without LEV	35.42	1.77	43.75	2.19
Quality control in a	PROC	>4hrs	Indoors with LEV	3.54	0.18	4.38	0.22
laboratory	15	1-4 hrs	Indoors without LEV	21.25	1.06	26.25	1.31
		1-4 hrs	Indoors with LEV	2.13	0.11	2.63	0.13

Page 14 of 31

SAFETY DATA SHEET

(according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA

Revision date: 01.05.2020 Version 4.2

AZOT

1.3 General Public / Consumer Exposure

Industrial uses of anhydrous and aqueous ammonia are carried out at industrial sites from which members of the public are excluded. Members of the public will not be exposed to anhydrous or aqueous ammonia during industrial end-use.

1.3.1 Indirect Exposure of Humans via the Environment (oral)

Ammonia is ubiquitous in the environment with <30% of emissions resulting from fertiliser uses and from non-agricultural sources (ref. 'Ammonia in the UK' - DEFRA).

In addition, there is no evidence that ammonia bioaccumulates as the log Kow value is 0.23. Since the trigger of BCF >100 (log Kow>3) is not met, the derivation of PNECs to protect against secondary poisoning is not required.

The risk of indirect exposure of humans via the environment is therefore not considered.

1.4 Environmental Exposure

First tier conservative environmental exposure estimations were carried out using EUSES 2.1 and with the specified defaults. Second tier worst case environmental exposure estimations were carried out using EUSES 2.1 to take into account more realistic factors that affect the environmental concentrations.

1.4.1 Environmental Releases

The environmental releases are determined primarily by tonnage and the ERC in the first tier with conservative estimations and defaults being implemented in EUSES. For the second tier assessments in EUSES, more realistic inputs were chosen to best suit the description of the production and uses of anhydrous ammonia. Emission defaults are those specified by the ECHA "Guidance on information requirements and chemical safety assessment: Chapter R.16: Environmental Exposure Estimation". Regional data and emission fractions were calculated using EUSES. Full EUSES inputs are shown below.

Table 1.3 Predicted Releases to the Environment Tier 1

ERC	Compartments	Predicted releases	Measured release	Explanation / source of measured data
	Release to air	1.21 x 10 ⁵ kg/day	-	Predicted values are those calculated by EUSES using the tonnage data and defaults for ERC6A.
6A	Release to wastewater	4.85 x 10 ⁴ kg/day	-	Predicted values are those calculated by EUSES using the tonnage data and defaults for ERC6A.
	Soil (direct only) Agricultural soil	NA	-	No directly loss to soil is expected for this ERC.

*The predicted releases were estimated using the EUSES 2.1 program.

In reality removal of ammonia in sewage treatment plants is highly efficient being removed first by nitrification to nitrate followed by denitrification resulting in the release of nitrogen gas. Complete consumption within the STP can be assumed and this has been used in the tier 2 assessment within EUSES.

Table 1.4 Predicted Releases to the Environment Tier 2

10010								
ERC	Compartments	Predicted releases	Measured release	Explanation / source of measured data				
	Release to air	1.21 x 10 ⁵ kg/day	-	Predicted values are those calculated by EUSES using the tonnage data and defaults for ERC6A.				
6A	Release to wastewater	4.85 x 10 ⁴ kg/day	-	Predicted values are those calculated by EUSES using the tonnage data and defaults for ERC6A.				
	Soil (direct only) Agricultural soil	NA	-	No direct loss to soil is expected for this ERC				

1.4.2 Exposure concentration in sewage treatment plants (STP)

Table 1.5 Tier 1 Concentrations in sewage

ERC for Compartment:	Estimated exposure concentration	ons	Measured exposure concentrations		Explanation / source of measured data
	Value	unit	value	unit	
Waste water before treatment ERC 6A	2.42 x 10 ⁻⁴	mg/L	NA	mg/L	
ERC 6A Sewage (STP effluent)	3.02 x 10 ³	mg/L	NA	mg/L	
ERC 6A Local freshwater	302	mg/L	NA	mg/L	10-fold dilution by receiving waters

Table 1.6 Tier 2 Concentrations in sewage

ERC for Compartment:	Estimated exposure concentrations						Explanation / source of measured data
	Value	unit	value	unit			
Waste water before treatment ERC 6A	2.42 x 10 ⁻⁴	mg/L	NA	mg/L			
ERC 6A Sewage (STP effluent)	0	mg/L	NA	mg/L	Based on efficient removal by STP		
ERC 6A Local freshwater	0	mg/L	NA	mg/L	10-fold dilution by receiving waters		

AZOT

Page 15 of 31

SAFETY DATA SHEET (according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA

Revision date: 01.05.2020 Version 4.2

	AZOT				
	.3 Exposure concentration in		-		
	1.7 Tier 1 Predicted Environm				
	artments	PEC aquatic (local	mg/L)	Justifi	cation
ERC6A	A Freshwater (in mg/L)	302			
ERC 6	A Marine water (in mg/L)	30.2		10-fold	dilution by receiving waters
Table	1.8 Tier 2 Predicted Environm	ental Concentrations	(PEC) in aquatic c	ompartment	
Compa	artments	PEC aquatic (local	mg/L)	Justifi	cation
ERC6A	A Freshwater (in mg/L)	2.19 x 10 ⁻³			
ERC6A	A Marine water (in mg/L)	5.37 x 10 ⁻⁴			
1.4	.4 Exposure concentration in	n sediments			
Tab	le 1.9 Tier 1 Predicted Enviror	mental Concentration	ns (PEC) in aquation	c sediment compartm	nent
Compa	artments		PEC aquatic (Ic	ocal)	
ERC6A	A Freshwater sediment (in mg/	kg)	327		
ERC6A	A Marine sediment (in mg/kg)		32.7		
Table	1.10 Tier 2 Predicted Environ	mental Concentrations	s (PEC) in aquatic	sediment compartme	ent
Compa	artments		PEC aquatic (lo	ocal)	
ERC6A	A Freshwater sediment (in mg/	kg)	2.37 x 10 ⁻³		
ERC6A	A Marine sediment (in mg/kg)	-	5.82 x 10 ⁻⁴		
1.4	.5 Exposure concentrations	in soil and groundw	ater		
the pro	ocess of ammonification or m ilised by plants or returned to t	ineralization. Ammoni he atmosphere follow	ium is then rapidly ing denitrification;	converted to nitrat	s and fungi to ammonium (NH_4^+) by e. Nitrate is subsequently taken up ion of nitrate into nitrogen or nitrous ification. Therefore accumulation of
	ntrations of ammonia in soil an			ion to mitates by mit	
	.6 Atmospheric compartmen	t	· · ·		
1.4					
1.4	.6 Atmospheric compartmen le 1.11 Tier 1 local concentrat		Estimated local concentrations	exposure	Explanation / source of data
1.4 Tab	.6 Atmospheric compartmen le 1.11 Tier 1 local concentrat During emission (mg/m3)		concentrations 33.7	exposure	Estimated using EUSES 2.1
1.4 Tab	6 Atmospheric compartmen le 1.11 Tier 1 local concentrat During emission (mg/m3) Annual average (mg/m3)	ions in air	concentrations 33.7 30.5	exposure	Estimated using EUSES 2.1 Estimated using EUSES 2.1
1.4 Tab ERC	.6 Atmospheric compartmen le 1.11 Tier 1 local concentrat During emission (mg/m3)	ions in air	concentrations 33.7	exposure	Estimated using EUSES 2.1
1.4 Tab ERC 6A	6 Atmospheric compartmen le 1.11 Tier 1 local concentrat During emission (mg/m3) Annual average (mg/m3)	ions in air	concentrations 33.7 30.5 43.9		Estimated using EUSES 2.1 Estimated using EUSES 2.1
1.4 Tab ERC 6A Table T ERC	.6 Atmospheric compartmen le 1.11 Tier 1 local concentrat During emission (mg/m3) Annual average (mg/m3) Annual deposition (mg/m²/d) 1.12 Tier 1 Predicted Exposure	ons in air	concentrations 33.7 30.5 43.9) in air Local concentration	PEC air (local+regional)	Estimated using EUSES 2.1 Estimated using EUSES 2.1 Estimated using EUSES 2.1 Justification
1.4 Tab ERC 6A Table ERC 6A	6 Atmospheric compartmen le 1.11 Tier 1 local concentrat During emission (mg/m3) Annual average (mg/m3) Annual deposition (mg/m²/d) 1.12 Tier 1 Predicted Exposure Annual average PEC in air,	e Concentration (PEC	concentrations 33.7 30.5 43.9) in air Local	PEC air	Estimated using EUSES 2.1 Estimated using EUSES 2.1 Estimated using EUSES 2.1
1.4 Tab ERC 6A Table ERC 6A	.6 Atmospheric compartmen le 1.11 Tier 1 local concentrat During emission (mg/m3) Annual average (mg/m3) Annual deposition (mg/m²/d) 1.12 Tier 1 Predicted Exposure	e Concentration (PEC	concentrations 33.7 30.5 43.9) in air Local concentration 30.5	PEC air (local+regional) 30.5	Estimated using EUSES 2.1 Estimated using EUSES 2.1 Estimated using EUSES 2.1 Justification
1.4 Tab ERC 6A Table ERC 6A	6 Atmospheric compartmen le 1.11 Tier 1 local concentrat During emission (mg/m3) Annual average (mg/m3) Annual deposition (mg/m²/d) 1.12 Tier 1 Predicted Exposure Annual average PEC in air,	e Concentration (PEC	concentrations 33.7 30.5 43.9 in air Local concentration 30.5 30.5 Estimated local	PEC air (local+regional) 30.5	Estimated using EUSES 2.1 Estimated using EUSES 2.1 Estimated using EUSES 2.1 Justification
1.4 Tab ERC 6A Table 6A 6A Table	6 Atmospheric compartmen le 1.11 Tier 1 local concentrat During emission (mg/m3) Annual average (mg/m3) Annual deposition (mg/m²/d) 1.12 Tier 1 Predicted Exposure Annual average PEC in air,	e Concentration (PEC	concentrations 33.7 30.5 43.9) in air Local concentration 30.5	PEC air (local+regional) 30.5	Estimated using EUSES 2.1 Estimated using EUSES 2.1 Estimated using EUSES 2.1 Justification Estimated using EUSES 2.1.
1.4 Tab ERC 6A Table ERC 6A Table ERC	6 Atmospheric compartmen le 1.11 Tier 1 local concentrat During emission (mg/m3) Annual average (mg/m3) Annual deposition (mg/m²/d) 1.12 Tier 1 Predicted Exposure Annual average PEC in air, 1.13 Tier 2 local concentration	e Concentration (PEC	concentrations 33.7 30.5 43.9 in air Local concentration 30.5 Estimated local concentrations	PEC air (local+regional) 30.5	Estimated using EUSES 2.1 Estimated using EUSES 2.1 Estimated using EUSES 2.1 Justification Estimated using EUSES 2.1. Explanation / source of data
1.4 Tab ERC 6A Table 6A 6A Table	6 Atmospheric compartmen le 1.11 Tier 1 local concentrat During emission (mg/m3) Annual average (mg/m3) Annual deposition (mg/m²/d) 1.12 Tier 1 Predicted Exposure Annual average PEC in air, 1.13 Tier 2 local concentration During emission (mg/m3)	e Concentration (PEC total (mg/m3) is in air	concentrations 33.7 30.5 43.9 in air Local concentration 30.5 Estimated local concentrations 33.7	PEC air (local+regional) 30.5	Estimated using EUSES 2.1 Estimated using EUSES 2.1 Estimated using EUSES 2.1 Justification Estimated using EUSES 2.1. Explanation / source of data Estimated using EUSES 2.1
1.4 Tab ERC 6A Table 6A Table ERC 6A	6 Atmospheric compartmen le 1.11 Tier 1 local concentrat During emission (mg/m3) Annual average (mg/m3) Annual deposition (mg/m²/d) 1.12 Tier 1 Predicted Exposure Annual average PEC in air, 1.13 Tier 2 local concentration During emission (mg/m3) Annual average (mg/m3) Annual deposition (mg/m²/d)	e Concentration (PEC total (mg/m3) is in air	concentrations33.730.543.9) in airLocal concentration30.5Estimated local concentrations33.730.543.8	PEC air (local+regional) 30.5	Estimated using EUSES 2.1 Estimated using EUSES 2.1 Estimated using EUSES 2.1 Justification Estimated using EUSES 2.1. Estimated using EUSES 2.1. Estimated using EUSES 2.1
1.4 Table 6A Table 6A Table 6A 6A 6A	6 Atmospheric compartmen le 1.11 Tier 1 local concentrat During emission (mg/m3) Annual average (mg/m3) Annual deposition (mg/m²/d) 1.12 Tier 1 Predicted Exposure Annual average PEC in air, 1.13 Tier 2 local concentration During emission (mg/m3) Annual average (mg/m3)	e Concentration (PEC	concentrations33.730.543.9) in airLocal concentration30.5Estimated local concentrations33.730.543.8	PEC air (local+regional) 30.5 exposure	Estimated using EUSES 2.1 Estimated using EUSES 2.1 Estimated using EUSES 2.1 Justification Estimated using EUSES 2.1. Estimated using EUSES 2.1 Estimated using EUSES 2.1 Estimated using EUSES 2.1
1.4 Tab ERC 6A Table 6A Table ERC 6A	6 Atmospheric compartmen le 1.11 Tier 1 local concentrat During emission (mg/m3) Annual average (mg/m3) Annual deposition (mg/m²/d) 1.12 Tier 1 Predicted Exposure Annual average PEC in air, 1.13 Tier 2 local concentration During emission (mg/m3) Annual average (mg/m3) Annual deposition (mg/m²/d)	e Concentration (PEC total (mg/m3) is in air	concentrations 33.7 30.5 43.9 in air Local concentration 30.5 Estimated local concentrations 33.7 30.5 43.9 Image: strength of the strengt of the strenge strength of the strength of the strength of the s	PEC air (local+regional) 30.5	Estimated using EUSES 2.1 Estimated using EUSES 2.1 Estimated using EUSES 2.1 Justification Estimated using EUSES 2.1. Estimated using EUSES 2.1. Estimated using EUSES 2.1
1.4 Table 6A 6A 6A 6A 6A 6A 6A 6A 6A	6 Atmospheric compartmen le 1.11 Tier 1 local concentrat During emission (mg/m3) Annual average (mg/m3) Annual deposition (mg/m²/d) 1.12 Tier 1 Predicted Exposure Annual average PEC in air, 1.13 Tier 2 local concentration During emission (mg/m3) Annual average (mg/m3) Annual deposition (mg/m²/d)	e Concentration (PEC total (mg/m3) is in air e Concentration (PEC cc total (mg/m3)	concentrations 33.7 30.5 43.9) in air Local concentration 30.5 Estimated local concentrations 33.7 30.5 43.8) in air ocal concentrations 0.5	PEC air (local+regional) 30.5 exposure PEC air (local+regional) 30.5	Estimated using EUSES 2.1 Estimated using EUSES 2.1 Estimated using EUSES 2.1 Justification Estimated using EUSES 2.1. Estimated using EUSES 2.1 Estimated using EUSES 2.1 Estimated using EUSES 2.1
1.4Table6AERC6ATableERC6ATableERC6AIn terrof BCcharact	6 Atmospheric compartmen le 1.11 Tier 1 local concentrat During emission (mg/m3) Annual average (mg/m3) Annual deposition (mg/m²/d) 1.12 Tier 1 Predicted Exposure Annual average PEC in air, 1.13 Tier 2 local concentration During emission (mg/m3) Annual average (mg/m3) Annual deposition (mg/m²/d) 1.14 Tier 2 Predicted Exposure Annual average PEC in air, .7 Exposure concentration resolves of secondary poisoning, the	e Concentration (PEC total (mg/m3) as in air e Concentration (PEC concentration (PEC conc	concentrations 33.7 30.5 43.9) in air Local concentration 30.5 Estimated local concentrations 33.7 30.5 Estimated local concentrations 33.7 30.5 43.8) in air oncentration 0.5 chain (Secondary) tt ammonia bioacco f PNECs to prote	PEC air (local+regional) 30.5 exposure PEC air (local+regional) 30.5 / poisoning) umulates as the log	Estimated using EUSES 2.1 Estimated using EUSES 2.1 Estimated using EUSES 2.1 Justification Estimated using EUSES 2.1. Estimated using EUSES 2.1 Estimated using EUSES 2.1 Estimated using EUSES 2.1 Estimated using EUSES 2.1
1.4 Table 6A Table 6A Table 6A Table 6A 6A Cable 7 Cable 7 Cable 6A Cable 7 CA Cable 7 C Cable 7 CA Cable 7	Atmospheric compartment Ie 1.11 Tier 1 local concentrat During emission (mg/m3) Annual average (mg/m3) Annual deposition (mg/m²/d) 1.12 Tier 1 Predicted Exposure Annual average PEC in air, 1.13 Tier 2 local concentration During emission (mg/m3) Annual average PEC in air, 1.14 Tier 2 Predicted Exposure Annual average PEC in air, .7 Exposure concentration resof secondary poisoning, the sof secondary poisoning, the station ratios cannot therefore Regional exposure levels an	e Concentration (PEC total (mg/m3) is in air cotal (mg/m3) is in air cotal (mg/m3) cotal (mg/m3) cot	concentrations 33.7 30.5 43.9) in air Local concentration 30.5 Estimated local concentrations 30.5 Estimated local concentrations 33.7 30.5 43.8) in air Docal concentration Doncentration 0.5 chain (Secondary) it ammonia bioacco f PNECs to prote ethroughout a regionario using the restriction	PEC air (local+regional) 30.5 exposure PEC air (local+regional) 30.5 / poisoning) umulates as the log ect against seconda on and this may lead	Estimated using EUSES 2.1 Estimated using EUSES 2.1 Estimated using EUSES 2.1 Justification Estimated using EUSES 2.1. Estimated using EUSES 2.1. Estimated using EUSES 2.1 Estimated using EUSES 2.1

Page 16 of 31

SAFETY DATA SHEET (according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA

Revision date: 01.05.2020 Version 4.2

ALVI

	Predicted region		Measured regiona concentrations	l exposure	Explanation / source of measured data
	PEC value	unit	Measured value	unit	
ERC 6a Freshwater	2.68 x 10 ⁻²	mg/L	NA	mg/L	
ERC 6a Marine water	2.67 x 10 ⁻³	mg/L	NA	mg/L	
ERC 6a Freshwater sediments	2.56 x 10 ⁻²	mg/kg	NA	mg/kg	
ERC 6a Marine sediments	2.56 x 10 ⁻³	mg/kg	NA	mg/kg	
ERC 6a Agricultural soil	1.00 x 10 ⁻³	mg/kg	NA	mg/kg	
ERC 6a Grassland	1.47 x 10 ⁻³	mg/kg	NA	mg/kg	
ERC 6a Air	2.24 x 10 ⁻³	mg/m ³	NA	mg/m ³	
Table 1.16 Tier 2 regional con	ncentrations in the	environment			
	Predicted regional Exposure Concentrations		Measured regiona concentrations	l exposure	Explanation / source of measured data
	Concentrations	5	concentrations		illeasuleu uala
	PEC value	unit	Measured value	unit	
ERC 6a Freshwater				unit mg/L	
ERC 6a Freshwater ERC 6a Marine water	PEC value	unit	Measured value		
	PEC value 2.19 x 10 ⁻³	unit mg/L	Measured value	mg/L	
ERC 6a Marine water ERC 6a Freshwater	PEC value 2.19 x 10 ⁻³ 5.37 x 10 ⁻⁴	unit mg/L mg/L	Measured value NA NA	mg/L mg/L	
ERC 6a Marine water ERC 6a Freshwater sediments	PEC value 2.19 x 10 ⁻³ 5.37 x 10 ⁻⁴ 2.09 x 10 ⁻³	unit mg/L mg/L mg/kg	Measured value NA NA NA	mg/L mg/L mg/kg	
ERC 6a Marine water ERC 6a Freshwater sediments ERC 6a Marine sediments	PEC value 2.19×10^{-3} 5.37×10^{-4} 2.09×10^{-3} 5.15×10^{-4}	unit mg/L mg/L mg/kg mg/kg	Measured value NA NA NA NA NA	mg/L mg/L mg/kg mg/kg	

Page 17 of 31

SAFETY DATA SHEET

(according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA

Revision date: 01.05.2020 Version 4.2

AZOT

Exposure Scenario No. 2: Industrial end-use: Use of ammonia as a processing aid, non-processing aid and auxiliary agent

2.1 Exposure scenario

Anhydrous liquid and aqueous solutions of ammonia are used by a range of industry sectors in a broad number of applications. These include industrial use as a reactive or non-reactive processing aid in continuous or batch processes, as an auxiliary agent or as substance in a closed system. Common industrial end-uses of ammonia are shown below in table 2.1. **Table 2.1** Common industrial end-uses of ammonia

		Tvr	be of u	se		
Industrial end-use	۵.	Zo	Цΰ	<.	⊃ s	Description of use
Use as developing agent in photochemical processes	х					Ammonia is used as a developing agent in photochemical processes such as white printing, blue printing and in the diazo duplication press.
Use of refrigerant systems		х			х	Anhydrous liquid ammonia is used as a refrigerant in household, commercial and industrial systems due to its high heat of vaporisation and relative ease of liquefaction.
Insulation products		Х				
Inks and toners	х	х				Ammonia vapours are used as a reagent in treating writing or ink marks
Coatings, thinners, paint removers	х	х				
Processing aid in chemicals industry			Х			
Use as an extraction agent			Х			Ammonia is used as an extraction agent in the mining industry to extract metals like copper, nickel and molybdenum from their ores.
Treatment of gas (NOx and SOx reduction)			х		x	Ammonia is used in stack emission control systems to neutralise sulphur oxides from combustion of sulphur-containing fuels, as a method of NOx control in both catalytic and non-catalytic applications and to enhance the efficiency of electrostatic precipitators for particulate control.
Processing aid in nutrition			Х		х	The food and beverage industry use ammonia as a source of nitrogen required for yeast and micro-organism
Use as neutralising agent			х		х	Ammonia is used by the petrochemical industry in neutralizing the acid constituents of crude oil and in the protection of equipment from corrosion
Textile dyes			Х			
Treatment of water	х		х			Aqueous ammonia is used in water and waste-water treatment areas to control pH, to regenerate weak anion exchange resins and as an oxygen scavenger in boiled water treatment. In water disinfection, aqueous ammonia is added to water containing free chlorine to produce a chloramines disinfectant.
Use as washing and cleaning products	x		х			Weak ammonia solutions are used extensively within industry, by professionals and consumers as commercial and household cleaners and detergents cleaning products. Commercial ammonia cleaning products contain up to 30% ammonia whereas household products contain 5-10% ammonia
Treatment of textiles		Х	Х			Liquid ammonia is used to increase the quality of textiles
Treatment of pulp and paper		х	х			Ammonia is used in the pulp and paper industry to pulp wood and as a casein dispersant to coat paper.
Treatment of leather		х	х			The leather industry utilises ammonia as a curing agent, as a slime and mould preservative in tanning liquors and as a protective agent for leather and furs in storage
Treatment of wood	х		х			Anhydrous ammonia fumes are used to darken wood in a process called "ammonia fuming"
Treatment of metal surfaces	x		х			Ammonia is used in metal treatment processes such as nitriding, carbonitriding, bright annealing, furnace brazing, sintering, sodium hydride descaling, atomic hydrogen welding and other application where protective atmospheres are required.
Treatment of rubber/latex		x	х			Concentrated aqueous ammonia is used in the rubber industry as a preservative for natural and synthetic latex due to its antibacterial and alkaline properties and as a stabiliser to prevent pre-mature coagulation (e.g. "ammoniation" of natural rubber latex.
Manufacture of semiconductors/electronic s				х		Ammonia is used in the electronics industry in the manufacturing of semiconductor chips.

Page 18 of 31

SAFETY DATA SHEET

(according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA

Revision date: 01.05.2020 Version 4.2

Adhesives, sealants	Х			Х						
	X			X						
Polymer preparations	^			^	X					
Aircare products					Х	Ammonia is used as a preservative for the storage of high moisture				
Preservatives		Х				Ammonia is uses as a preservative for the storage of high moisture corn				
2.1.2 Description of activ	vities a	nd pro	cesses	cove	red in	the exposure scenario				
ammonia vary considerably tasks is beyond the scope the industrial end-use of an by REACH guidance. Proce with no likelihood of expo formulation using closed b process (PROC 5), indust	across of this monia esses a sure (f atch pr rial spr PROC 9	application report. have be and action ROC ocesses aying (), brust	ations a For the een reprivities re 1), use s (PROC PROC h and ro	nd in purpe resen levar in c C 3), 7), m oller a	dustria ose of ited ge it to ES lose, c use in nainten applicat	ustrial end-use scenarios involving anhydrous and aqueous forms of I sector of use. A full characterisation of the frequency and duration of worker exposure estimation, activities and processes associated with nerically, based on the process categories (e.g. PROC codes) defined S 2 are described as: use and storage of ammonia in closed systems continuous process with occasional controlled exposure (PROC 2), h batch or other processes (PROC 4), mixing or blending in a batch ance and clean down (PROC 8a), transfer (PROC 8b), transfer of tions (PROC 10), treatment of articles by dipping and pouring (PROC ROC 19)				
2.1.3 Operational conditio										
Operational conditions per ammonia vary considerably tasks is beyond the scope	taining across of thi ed on t	to the application s report he assu	broad rations a t. For t umption	ange nd in he p s that	of ind dustria urpose t tasks	ustrial end-use scenarios involving anhydrous and aqueous forms of I sector of use. A full characterisation of the frequency and duration of s of worker exposure estimation, operational conditions have been may be either 1-4 hours or >4 hours in duration and processes can be				
2.1.4 Risk Management M	leasure	es								
rooms with no direct contact these processes is therefore Workers may potentially be All operations are performe closed sample loop. Extract in closed containers and ta applied when maintenance and protective overalls) is w All technological devices h discharge of ammonia. Good occupational hygier	ct with e neglige expose d in a c t ventila nks. Ar activiti vorn wh ave a p e and nanufac	chemica jible sin ed to a closed s tition is nmonia es are en any proper o exposu ture, sa	al proce ce they mmonia system. provideo is trans carried potentia quality c ure cont ampling	ssing are le whe Pipel d at o sferre out. I al con ertific trol m and	units ocated n cond ines ar pening d unde Person tact ma cation, neasure transfe	e housed outdoors, with workers being segregated in separate control The potential for industrial workers to be exposed to ammonia during in a separate control room. ucting field activities (e.g. when operating valves, pumps or tanks etc). Ind vessels are sealed and insulated and sampling is carried out with a las and points were emission may occur. Anhydrous ammonia is stored er containment. A good standard of general or controlled ventilation is al protective clothing (e.g. face/eye protection, helmet, gloves, boots ay arise. and are regularly controlled and maintained to avoid the uncontrolled es are implemented to minimise the potential for worker exposure. er of anhydrous ammonia to road tankers are well-trained in these				
2.2 Exposure Estimation	opnato	protool		pinoi						
The assessment of worker out for processes relevant to with no likelihood of expose formulation using closed bo process (PROC 5), indust ammonia into containers (F 13), and analysis of sample A screening-level (Tier 1) model. The ECETOC TRA	The assessment of worker exposure to anhydrous and aqueous forms of ammonia in industrial end-use applications was carried out for processes relevant to this scenario as identified by PROC codes reflecting: use and storage of ammonia in closed systems with no likelihood of exposure (PROC 1), use in closed, continuous processes with occasional controlled exposure (PROC 2), formulation using closed batch processes (PROC 3), use in batch or other processes (PROC 4), mixing or blending in a batch process (PROC 5), industrial spraying (PROC 7), maintenance and clean down (PROC 8a), transfer (PROC 8b), transfer of ammonia into containers (PROC 9), brush and roller applications (PROC 10), treatment of articles by dipping and pouring (PROC 13), and analysis of samples (PROC 15) and hand-mixing (PROC 19). A screening-level (Tier 1) assessment of worker exposure was carried out using the ECETOC Targeted Risk Assessment (TRA) model. The ECETOC TRA was used to predict dermal exposures (expressed as a daily systemic dose in mg/kg bw) and inhalation exposure concentrations (expressed as an airborne concentration in mg/m3) associated with each process defined by PROC									
Exposure to workers was a end-use of ammonia and th hours or >4 hours and assu or indoors with the use of assuming either no gloves equipment (RPE), inhalation worn.	ne impa iming th LEV. T or glow n expos	ct of di nat proc o reflec ves affo sure cor	fferent e cess are ct the u rding 90 ncentrat	expos carri se of 0% p ions v	ure co ed out perso rotectic were de	erent operational conditions that may be associated with the industrial ntrol measures. Exposures were determined for task durations of 1- 4 either outdoors, indoors without use of local exhaust ventilation (LEV) nal protective equipment (PPE), dermal exposures were determined on of the hands are worn. To reflect the use of respiratory protective etermined assuming either no RPE or RPE affording 95% protection is ermine dermal exposures that does not take the physical-chemical				
properties of a substance ir ammonia. Parameters used g.mol ⁻¹ for aqueous and an is 8.6 x 10 ⁵ Pa at 20°C, wh	nto acco l in the hydrous ereas t	ount. Th ECETC s forms he vap	ne same DC TRA respect our pres	e derr mod tively sure	nal exp el to as) and v of aqu	posure where therefore predicted for anhydrous and aqueous forms of ssess inhalation exposures were: molecular weight (35 g.mol ⁻¹ and 17 rapour pressure (the vapour pressure of anhydrous forms of ammonia eous ammonia solution between 5 and 25% w/w ranges from 5 x 10^3 en determined for a worker with bodyweight 70 kg.				

Page 19 of 31

SAFETY DATA SHEET

(according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA

Revision date: 01.05.2020 Version 4.2

AZOT

2.2.1 Acute/Short term and long-term exposure

>4 hrs

no likelihood of exposure

Potential systemic dermal exposures and inhalation exposure concentrations predicted by the ECETOC TRA model for the industrial end-use of ammonia are shown in Tables 2.2 and 2.3 respectively. ECETOC predicts a daily systemic dose following dermal exposure and a typical daily inhalation exposure concentration and does not specifically predict acute (short-term) and chronic (long-term) exposures.

Table 2.2 Dermal exposures to anhydrous or aqueous (in preparations of 5-25 % w/w) ammonia predicted using the ECETOC TRA model for industrial workers during industrial end-use processes

Description of activity	PROC	Exposure as	sum	ptions			Estimated Exposure Concentration mg/kg bw/d			
		Duration		Use of ventilat	on			gloves	Gloves worn (90% reduction)	
Used in a closed process, no likelihood of exposure: Storage (closed bulk or container)	PROC 1	1-4 hrs or >4	hrs	Outdoors /Indoo	ors without	LEV	0.34	ŀ	0.03	
Use in a closed,		1-4 hrs or >4	hrs	Outdoors /Indoo	ors without	LEV	1.37	,	0.14	
continuous process with occasional controlled exposure (e.g. sampling)	PROC 2	1-4 hrs or >4	1-4 hrs or >4 hrs Indoors		ndoors with LEV			Ļ	0.01	
Use in closed batch	DD00 0	1-4 hrs or >4	hrs	Outdoors / Indoors without LEV		LEV	0.34	Ļ	0.03	
process (synthesis or formulation)	PROC 3	1-4 hrs or >4	hrs	Indoors with LE	V		0.03	3	<0.01	
Use in batch process		1-4 hrs or >4	hrs	Outdoors / Indo	ors without	LEV	6.86	6	0.69	
(synthesis) where opportunity for exposure arises	PROC 4	1-4 hrs or >4	hrs	Indoors with LEV		0.69)	0.07		
Mixing or blending in		1-4 hrs or >4	hrs	Outdoors / Indoors without LEV		13.71		1.37		
batch process	PROC 5	1-4 hrs or >4	hrs	Indoors with LE	V		0.07	7	0.01	
la dustrial serves de s	DD00 7	1-4 hrs or >4	hrs	Outdoors / Indo	Outdoors / Indoors without LEV		42.86		4.29	
Industrial spraying	PROC 7	1-4 hrs or >4	hrs	Indoors with LE	V		2.14		0.21	
Maintenance, clean	PROC 8a	1-4 hrs or >4	hrs	Outdoors / Indo	Outdoors / Indoors without LEV			'1	1.37	
down	PROC 6a	1-4 hrs or >4	hrs	Indoors with LE	V		0.14	Ļ	0.01	
Transfer		1-4 hrs or >4	hrs	Outdoors / Indo	ors without	LEV	6.86	5	0.69	
(charging/discharging) from/to vessels or large containers at dedicated facilities	PROC 8b	1-4 hrs or >4	hrs	Indoors with LE	V	0.69)	0.07	
Transfer into small	PROC 9	1-4 hrs or >4	hrs	Outdoors / Indo	ors without	LEV	6.86		0.69	
containers	FROC 9	1-4 hrs or >4	hrs	Indoors with LE	V		0.69)	0.07	
Roller application or	PROC 10	1-4 hrs or >4	hrs	Outdoors / Indo	ors without	LEV	27.4	3	2.74	
brushing	FROC IU	1-4 hrs or >4	hrs	Indoors with LE	V		1.37	7	0.14	
Treatment of articles by	PROC 13	1-4 hrs or >4	hrs	Outdoors / Indo	ors without	LEV	13.7	'1	1.37	
dipping and pouring	FROC 13	1-4 hrs or >4	hrs	Indoors with LE	V		0.69)	0.07	
Quality control in a	PROC 15	1-4 hrs or >4	hrs	Outdoors / Indo	ors without	LEV	0.34	ŀ	0.03	
laboratory	110013	1-4 hrs or >4	hrs	Indoors with LE	V		0.03	3	<0.01	
And-mixing with intimate contact and PPE only	PROC 19	1-4 hrs or >4		Outdoors / Indo			141		14.13	
Table 2.3 Inhalation ex							of 5-28	5 % w/w) ar	nmonia predicted	
using the ECETOC TRA model fo			.ers u		Anhydro ammonia	us		Aqueous w/w)	ammonia (5-25%	
Description of activity	PROC	Exposure a	ssun	nptions	Estimated Exposu Concentration mg/m3		ure Estimated I		d Exposure ation mg/m3	
		Duration	Use	e of ventilation	No RPE	RPE (9) reducti		No RPE	RPE (95% reduction)	
Used in a closed process	PROC 1	1-4 hrs or	Out	tdoors	0.00	NA		0.01	0.00	

Page 20 of 31

SAFETY DATA SHEET (according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA

Revision date: 01.05.2020 Version 4.2

		1-4 hrs or	Indoors without	0.01	NA	0.01	0.00
		>4 hrs >4hrs	LEV Outdoors	24.79	1.24	30.63	1.53
Use of ammonia in a			Indoors without	1			
closed, continuous		>4hrs	LEV	35.42	1.77	43.75	2.19
process with occasional controlled exposure (e.g.	PROC 2	>4hrs	Indoors with LEV	3.53	0.18	4.38	0.22
sampling)		1-4 hrs Outdoors		14.88	0.74	18.38	0.92
		1-4 hrs	LEV	22.25	1.06	26.25	1.31
		1-4 hrs	Indoors with LEV	2.13	0.11	2.63	0.13
		>4hrs	Outdoors	49.58	2.48	61.25	3.06
		>4hrs	Indoors without LEV	70.83	3.54	87.5	4.38
Use of ammonia in closed batch process (synthesis	PROC 3	>4hrs	Indoors with LEV	7.08	0.35	8.75	0.44
or formulation)		1-4 hrs	Outdoors	29.75	1.49	36.75	1.84
		1-4 hrs	Indoors without LEV	42.5	2.13	52.50	2.63
		1-4 hrs	Indoors with LEV	4.25	0.21	5.25	0.26
		>4hrs	Outdoors	49.58	2.48	61.25	3.06
Line of expression in botch		>4hrs	Indoors without LEV	70.83	3.54	87.5	4.38
Use of ammonia in batch process (synthesis)	PROC 4	>4hrs	Indoors with LEV	7.08	0.35	8.75	0.44
where opportunity for	FROC 4	1-4 hrs	Outdoors	29.75	1.49	36.75	1.84
exposure arises		1-4 hrs	Indoors without LEV	42.5	2.13	52.5	2.63
		1-4 hrs	Indoors with LEV	4.25	0.21	5.25	0.26
		>4hrs	Outdoors	123.96	6.20	153.13	7.66
		>4hrs	Indoors without LEV	177.08	8.85	218.75	10.94
Mixing or blending in	PROC 5	>4hrs	Indoors with LEV	17.71	0.89	21.88	1.09
batch process	1100.3	1-4 hrs	Outdoors	74.38	3.72	91.88	4.59
		1-4 hrs Indoors without LEV		106.25	5.31	131.25	6.56
		1-4 hrs	Indoors with LEV	10.63	0.53	13.13	0.66
		>4hrs	Outdoors	NA	NA	306.25	15.31
		>4hrs	Indoors without LEV	NA	NA	437.5	21.88
Industrial spraying	PROC 7	>4hrs	Indoors with LEV	NA	NA	21.88	1.09
industrial spraying		1-4 hrs	Outdoors	NA	NA	183.75	9.19
		1-4 hrs	Indoors without LEV	NA	NA	262.5	13.13
		1-4 hrs	Indoors with LEV	NA	NA	13.13	0.66
		>4hrs	Outdoors	123.96	6.20	153.13	7.66
Transfer of ammonia		>4hrs	Indoors without LEV	177.08	8.85	218.75	10.94
(charging/discharging) from/to vessels or large	PROC	>4hrs	Indoors with LEV	17.71	0.89	21.88	1.09
containers at non-	8a	1-4 hrs	Outdoors	74.38	3.72	91.88	4.59
dedicated facilities		1-4 hrs	Indoors without LEV	106.25	5.31	131.25	6.56
		1-4 hrs	Indoors with LEV	10.63	0.53	13.13	0.66
_ ,		>4hrs	Outdoors	74.38	3.72	91.88	4.59
Transfer of ammonia (charging/discharging)	PROC	>4hrs	Indoors without LEV	106.25	5.31	131.25	6.56
from/to vessels or large containers at dedicated	8b	>4hrs	Indoors with LEV	3.19	0.16	3.94	0.20
facilities		1-4 hrs	Outdoors	44.63	2.23	55.13	2.76
		1-4 hrs	Indoors without	63.75	3.19	78.75	3.94

Page 21 of 31

SAFETY DATA SHEET

(according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA

Revision date: 01.05.2020 Version 4.2

0	1	E	R	ĸ	A	2	Y	
		7	1	1		۷.	т	
-	٩	Z	2	5		,	L	
-		_	-					

			LEV				
		1-4 hrs	Indoors with LEV	1.91	0.1	2.36	0.12
		>4hrs	Outdoors	99.17	4.96	122.50	6.13
		>4hrs	Indoors without LEV	141.67	7.08	175.00	8.75
Transfer of ammonia into	PROC 9	>4hrs	Indoors with LEV	14.17	0.71	17.50	0.88
small containers	1100 9	1-4 hrs	Outdoors	59.50	2.98	73.50	3.68
		1-4 hrs	Indoors without LEV	85.00	4.25	105.00	5.25
		1-4 hrs	Indoors with LEV	8.5	0.43	10.50	0.53
		>4hrs	Outdoors	NA	NA	153.13	7.66
		>4hrs	Indoors without LEV	NA	NA	218.75	10.94
Roller application or	PROC	>4hrs	Indoors with LEV	NA	NA	21.88	1.09
brushing	10	1-4 hrs	Outdoors	NA	NA	91.88	4.59
		1-4 hrs	Indoors without LEV	NA	NA	131.25	6.56
		>4hrs	Outdoors	NA	NA	13.13	0.66
		>4hrs	Outdoors	123.96	6.20	153.13	7.66
		>4hrs	Indoors without LEV	177.08	8.85	218.75	10.94
Treatment of articles by	PROC	>4hrs	Indoors with LEV	17.71	0.89	21.88	1.09
dipping and pouring	13	1-4 hrs	Outdoors	74.38	3.72	91.88	4.59
		1-4 hrs	Indoors without LEV	106.25	5.31	131.25	6.56
		1-4 hrs	Indoors with LEV	10.63	0.53	13.13	0.66
		>4hrs	Indoors without LEV	35.42	1.77	43.75	2.19
Use as a laboratory agent	PROC	>4hrs	Indoors with LEV	3.54	0.18	4.38	0.22
Use as a laboratory agent	15	1-4 hrs	Indoors without LEV	21.25	1.06	26.25	1.31
		1-4 hrs	Indoors with LEV	2.13	0.11	2.63	0.13
		<4 hrs	Outdoors	NA	NA	153.13	7.66
Hand-mixing with intimate	PROC	<4 hrs	Indoors without LEV	NA	NA	218.75	10.94
contact and PPE only	19	1-4 hrs	Outdoors	NA	NA	91.88	4.59
		1-4 hrs	Indoors without LEV	NA	NA	131.25	6.56

Industrial uses of anhydrous and aqueous ammonia are carried out at industrial sites from which members of the public are excluded. Members of the public will not be exposed to anhydrous or aqueous ammonia during industrial end-use.

2.3.1 Indirect exposure of humans via the environment (oral)

Ammonia is ubiquitous in the environment with <30% of emissions resulting from fertiliser uses and from non-agricultural sources (ref. 'Ammonia in the UK' - DEFRA).

In addition, there is no evidence that ammonia bioaccumulates as the log Kow value is 0.23. Since the trigger of BCF >100 (log Kow>3) is not met, the derivation of PNECs to protect against secondary poisoning is not required. The risk of indirect exposure of humans via the environment is therefore not considered.

2.4 Environmental exposure

First tier conservative environmental exposure estimations were carried out using EUSES 2.1 and with the specified defaults. Second tier worst case environmental exposure estimations were carried out using EUSES 2.1 to take into account more realistic factors that affect the environmental concentrations.

2.4.1 Environmental releases

The environmental releases are determined primarily by tonnage and the ERC in the first tier with conservative estimations and defaults being implemented in EUSES. For the second tier assessments in EUSES, more realistic inputs were chosen to best suit the description of the production and uses of anhydrous ammonia. Emission defaults are those specified by the ECHA "Guidance on information requirements and chemical safety assessment: Chapter R.16: Environmental Exposure Estimation". Regional data and emission fractions were calculated using EUSES. Full EUSES inputs are shown below.

Table 2.4 Predicted Releases to the Environment Tier 1

Page 22 of 31

SAFETY DATA SHEET

(according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA

Revision date: 01.05.2020 Version 4.2

ERC	Compartments	Predicted releases	Measured release	Explanation / source of measured data
	Release to air	7.15 x 10 ⁴ kg/day	-	Predicted values are those calculated by EUSES using the tonnage data and defaults for ERC4.
4	Release to wastewater	7.52 X 10 ⁴ kg/day	-	Predicted values are those calculated by EUSES using the tonnage data and defaults for ERC4.
	Soil (direct only) Agricultural soil	No direct loss to soil is expected for this ERC.		
	Release to air	3.76 X 10 ⁴ kg/day	-	Predicted values are those calculated by EUSES using the tonnage data and defaults for ERC5.
5	Release to wastewater	3.76 X 10 ⁴ kg/day	-	Predicted values are those calculated by EUSES using the tonnage data and defaults for ERC5.
	Soil (direct only) Agricultural soil	NA	-	No direct loss to soil is expected for this ERC.
	Release to air	75.2 kg/day	-	Predicted values are those calculated by EUSES using the tonnage data and defaults for ERC6B.
6B	Release to wastewater	3760 kg/day	-	Predicted values are those calculated by EUSES using the tonnage data and defaults for ERC6B.
	Soil (direct only) Agricultural soil	NA	-	No direct loss to soil is expected for this ERC.
	Release to air	3760 kg/day	-	Predicted values are those calculated by EUSES using the tonnage data and defaults for ERC7.
7	Release to wastewater	3760 kg/day	-	Predicted values are those calculated by EUSES using the tonnage data and defaults for ERC7.
	Soil (direct only) Agricultural soil	NA	-	No direct loss to soil is expected for this ERC.
*The p	redicted releases were	estimated using the EU	SES 2.1 progr	am.
				efficient being removed first by nitrification to nitrate followed by onsumption within the STP can be assumed and this has been

denitrification resulting in the release of nitrogen gas. Complete consumption within the STP can be assumed and this has been used in the tier 2 assessment within EUSES.

Page 23 of 31

SAFETY DATA SHEET (according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA

Revision date: 01.05.2020 Version 4.2

Tal	ble 2.5 RMMs and	Imeasure	ed values for	tier 2 asses	ssment							
	ption of RMM	Details				accou	nt in EUSES		Comments			
Efficien	nt removal of nia in STP.		(Local) (Regional)	Applied at	owering of calculated concentration in STP effluent. Applied at both a local and a regional level. All regional emissions to STP.							
Tal	ble 2.6 Predicted I	Releases	to the Enviro	onment Tier								
ERC	Compartments		Predicted	releases	Meas	sured ise	Explanation	/ source of measur	ed data			
	Release to air		7.15 x 10 ⁴ ł	(g/day	g/day - F			Predicted values are those calculated by EUSES using the tonnage data and defaults for ERC4.				
4	Release to wast		7.52 X 10⁴ kg/day		-		Predicted values are those calculated by EUSES using the tonnage data and defaults for ERC4.					
	Soil (direct only) Agricultural soil		NA		-		No direct los	s to soil is expected t	for this ERC.			
	Release to air		3.76 X 10 ⁴	kg/day	-		the tonnage	data and defaults for				
5	Release to wast		3.76 X 10 ⁴ kg/day		-			alues are those calc data and defaults for	ulated by EUSES using ERC5.			
	Soil (direct only) Agricultural soil		-			s to soil is expected t						
	Release to air		75.2 kg/day	/	-		the tonnage	data and defaults for				
6B	Release to wast		3760 kg/da	у	-			alues are those calc data and defaults for	ulated by EUSES using ERC6B.			
	Soil (direct only) Agricultural soil		-			s to soil is expected t						
	Release to air	у	-		the tonnage	data and defaults for						
7	Release to wast	у	-			alues are those calc data and defaults for	ulated by EUSES using ERC7.					
	Soil (direct only) Agricultural soil		NA		-		No direct los	s to soil is expected t	for this ERC.			
	xposure concent					')						
Tal	ble 2.7 General er	nission fr	actions from	the municip	oal STP							
Fractic	on description					Fract value		unit				
Fractio	n of emission dire	cted to ai	r by STP			0.583			%			
Fractio	n of emission dire	cted to wa	ater by STP			12.4		%				
Fractio	n of emission dire	cted to sl	udge by STP			0.13		%				
Fractio	n of emission degi	raded by	STP			86.8		%				
2.4.3 E	xposure concent	tration in	aquatic pel	agic comp	artmen	t						
Tal	ble 2.8 Tier 1 Prec	dicted Env	vironmental (Concentratio	ons (PE	C) in ac	uatic compart	ment				
Compa	artments			PEC a	quatic (local m	ng/L)	Justification				
ERC4	Freshwater (in mg	/L)		468								
ERC4	Marine water (in m	ng/L)		46.8								
ERC5	Freshwater (in mg	/L)		234								
ERC5 Marine water (in mg/L)												
ERC6B Freshwater (in mg/L)												
ERC6E	2.34											
ERC7 Freshwater (in mg/L)					23.4							
ERC7 I	2.34											
	ble 2.9 Tier 2 Prec	· · ·	vironmental (ons (PE	C) in ac	quatic compart	ment				
	artments				, ,			Justification				
ERC4	Freshwater (in mg	/L)		2.82 x	10 ⁻³							
ERC4	Marine water (in m	ng/L)		6.06 x	10 ⁻⁴							
ERC5	Freshwater (in mg	/L)		1.46 x	10 ⁻³							
	-							•				

Page 24 of 31

SAFETY DATA SHEET

(according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA

	Revision date: 01.05.2020 Version 4.2									
		0.4740-4								
		3.17 x 10 ⁻⁴								
	3	4.54 x 10 ⁻⁵								
		5.19 x 10 ⁻⁶								
	ξ	1.46x 10 ⁻⁴								
	()	3.17 x 10 ⁻⁵								
	exposure concentration in sediments									
	ble 2.10 Tier 1 Predicted Environmental Cor	centrations (PEC) ir								
-	irtments			C aquatic (local)						
	Freshwater sediment (in mg/kg)		507							
	Marine sediment (in mg/kg)		50.							
	reshwater sediment (in mg/kg)		253							
	Marine sediment (in mg/kg)		25.							
	Freshwater sediment (in mg/kg)		25.							
	Marine sediment (in mg/kg)		2.5							
	P Freshwater sediment (in mg/kg)		0.0							
	Marine sediment (in mg/kg)			0274						
	Freshwater sediment (in mg/kg)		25.							
	Marine sediment (in mg/kg)		2.5							
	ble 2.11 Tier 2 Predicted Environmental Cor		-	mpartment						
-	rtments	PEC aquatic (local)							
	Freshwater sediment (in mg/kg)		3.05 x 10 ⁻³							
	Marine sediment (in mg/kg)	6.56 x 10 ⁻⁴								
	Freshwater sediment (in mg/kg)	1.58 x 10 ⁻³								
ERC5 N	Marine sediment (in mg/kg)	3.43 x 10 ⁻⁴								
ERC6B	Freshwater sediment (in mg/kg)	4.91 x 10 ⁻⁵								
ERC6B	Marine sediment (in mg/kg)	5.62 x 10 ⁻⁶								
ERC7 F	Freshwater sediment (in mg/kg)	1.58 x 10 ⁻⁴								
ERC7 N	Marine sediment (in mg/kg)	3.43 x 10 ⁻⁵								
	Exposure concentrations in soil and gro									
by the and uti nitrous	contact with soil, ammonia will be rapidly c process of ammonification or mineralization ilised by plants or returned to the atmospl oxide (N2O) gas. The most likely fate o ulation of concentrations of ammonia in soil	Ammonium is then here following denit f ammonium ions i	rapidly converted to rification; the metabo n soils is conversion	nitrate. Nitrate is subsequently taken up lic reduction of nitrate into nitrogen or						
Tab	ble 2.12 Tier 1 Predicted Exposure Concent	ation (PEC) in air								
ERC		Local concentration	PEC air (local+regional)	Justification						
4	Annual average PEC in air, total (mg/m3)	18	18	Estimated using EUSES 2.1.						
5	Annual average PEC in air, total (mg/m3)	9.45	9.45	Estimated using EUSES 2.1.						
6B	Annual average PEC in air, total (mg/m3)	0.0189	0.0189	Estimated using EUSES 2.1.						
6D	Annual average PEC in air, total (mg/m3)	6.62	6.62	Estimated using EUSES 2.1.						
7	Annual average PEC in air, total (mg/m3)	0.945	0.945	Estimated using EUSES 2.1.						
Tab	ble 2.13 Tier 2 Predicted Exposure Concent	ation (PEC) in air		· · · · · ·						
ERC		Local	PEC air	Justification						
4	Annual average PEC in air, total (mg/m3)	concentration 18	(local+regional) 18	Estimated using EUSES 2.1.						
5	Annual average PEC in air, total (mg/m3)	9.45	9.45	Estimated using EUSES 2.1.						
6B	Annual average PEC in air, total (mg/m3)	0.0189	0.0189	Estimated using EUSES 2.1.						
7	Annual average PEC in air, total (mg/m3)	0.945	0.945	Estimated using EUSES 2.1.						
	<u> </u>	1 -	1	3 - - - - - - - - - -						

Page 25 of 31

SAFETY DATA SHEET

(according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA

Revision date: 01.05.2020 Version 4.2

AZOT

2.4.6 Exposure concentration relevant for the food chain (Secondary poisoning)

In terms of secondary poisoning, there is no evidence that ammonia bioaccumulates as the log Kow value is 0.23. Since the trigger of BCF >100 (log Kow>3) is not met, the derivation of PNECs to protect against secondary poisoning is not required. Risk characterisation ratios cannot therefore be derived.

2.4.7 Regional exposure levels and environmental concentrations

Anhydrous ammonia is produced and used at many sites throughout a region and this may lead to a degree of regional exposure. Regional exposure has been modelled for this exposure scenario using the regional module of EUSES 2.1.

Page 26 of 31

SAFETY DATA SHEET

(according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA

Revision date: 01.05.2020 Version 4.2

AZOT

Exposure Scenario No. 3: Wide dispersive end-use: Professional uses of anhydrous and aqueous ammonia

3.1 Exposure scenario

Anhydrous liquid ammonia (>99.5 % wt) and aqueous ammonia solution (5-25% wt) are used by professional workers in a broad number of applications. Common applications include: use as a laboratory chemical, a refrigerant in cooling systems, a water treatment chemical, a fertiliser, a coating, paint thinner or paint remover, a photochemical, a cleaning product, a leather or other surface treatment product, a pH regulator or neutralisation agent and a process aid for nutrition.

Typical activities associated with the professional uses of ammonia where exposures can arise include operating equipment containing ammonia (e.g. opening and closing valves), transferring ammonia from storage containers using pipe or hoses, maintaining equipment and applying ammonia-based products (e.g. fertiliser, cleaning or surface treatment products).

3.1.1 Operational conditions related to frequency and duration of use

Operational conditions pertaining to the broad range of professional end-use scenarios involving anhydrous and aqueous forms of ammonia vary considerably across applications. A full characterisation of the frequency and duration of tasks is therefore beyond the scope of this report. For the purposes of worker exposure estimation, operational conditions have been represented generically based on the assumption that tasks may be either 1-4 hours or >4 hours in duration and that processes may be carried out either outdoors, indoors without LEV or indoors with LEV.

3.1.2 Risk management measures

Activities involving the use of ammonia by professionals can be regarded as wide dispersive uses: e.g. activities which deliver uncontrolled exposures. Professional workers are expected to follow good occupational hygiene practices and apply appropriate exposure control measures to minimise the potential for exposure. Workers should be trained in procedures involving the handling, sampling and transfer of ammonia and in the use of appropriate protective equipment. A good standard of general or controlled ventilation should be applied. Personal protective clothing (e.g. face/eye protection, helmet, gloves, boots and protective overalls) should be worn when any potential contact may arise. Any professional working directly with anhydrous ammonia as required to wear eye, face and respiratory protection.

3.2 Exposure estimation

3.2.1 Workers exposure

The assessment of worker exposure to anhydrous and aqueous ammonia during professional uses was carried out for process categories relevant to this scenario as identified by PROC codes: use and storage of ammonia in closed systems with no likelihood of exposure (PROC 1), use in closed, continuous processes with occasional controlled exposure (PROC 2), formulation using closed batch processes (PROC 3), use in batch or other processes (PROC 4), mixing or blending in a batch process (PROC 5), maintenance and clean-down (PROC 8a), transfer (PROC 8b), transfer of ammonia into containers (PROC 9), brush and roller applications (PROC 10), spraying (PROC 11), treatment of articles by dipping and pouring (PROC 13), and analysis of samples (PROC 15), hand-mixing (PROC 19) and heat and pressure transfer in closed systems (PROC 20).

A screening-level (Tier 1) assessment of worker exposure was carried out using the ECETOC Targeted Risk Assessment (TRA) model. The ECETOC TRA was used to predict dermal exposures (expressed as a daily systemic dose in mg/kg bw) and inhalation exposure concentrations (expressed as an airborne concentration in mg/m³) associated with each process defined by PROC codes. Exposure to workers was assessed taking into account different operational conditions that may be associated with the professional use of ammonia and the impact of different exposure control measures. Exposures were determined for task durations of 1- 4 hours or >4 hours and assuming that process are carried out either outdoors, indoors without use of local exhaust ventilation (LEV) or indoors with the use of LEV. To reflect the use of personal protective equipment (PPE), dermal exposures were determined assuming either no gloves or gloves affording 90% protection of the hands are worn. To reflect the use of respiratory protective equipment (RPE), inhalation exposures concentrations were determined assuming either no RPE or RPE affording 95% protection is worn.

The ECETOC TRA model uses a simple algorithm to determine dermal exposures that does not take the physical-chemical properties of a substance into account. The same dermal exposures where therefore predicted for anhydrous and aqueous forms of ammonia. Parameters used in the ECETOC TRA model to assess inhalation exposures were: molecular weight (35 g.mol⁻¹ and 17 g.mol⁻¹ for aqueous and anhydrous forms respectively and vapour pressure (the vapour pressure of anhydrous forms of ammonia is 8.6×10^5 Pa at 20°C, whereas the vapour pressure of aqueous ammonia solution between 5 and 25% w/w ranges from 5 x 10³ Pa to 4 x10⁴ Pa at 20°C. Systemic dermal exposures have been determined for a worker with bodyweight 70 kg.

3.2.2 Acute/Short Term and Long Term Exposure

Potential systemic dermal exposures and inhalation exposure concentrations predicted by the ECETOC TRA model for processes associated with the professional use of ammonia are shown in Tables 3.1 and 3.2 respectively. ECETOC predicts a daily systemic dose following dermal exposure and a typical daily inhalation exposure concentration and does not specifically predict acute (short-term) and chronic (long-term) exposures.

Table 3.1 Dermal exposures to anhydrous or aqueous (in preparations of 5-25 % w/w) ammonia predicted using the ECETOC TRA model for professional workers

Description of activity	PROC	Exposure assun	nptions	Estimated Exposure Concentration		
		Duration Use of ventilation		No gloves worn	Gloves worn (90% reduction)	
Used in a closed process, no likelihood of exposure	PROC 1	1-4 hrs or >4 hrs	Outdoors /Indoors without LEV	0.34	0.03	
Use of ammonia in a closed, continuous	PROC 2	1-4 hrs or >4 hrs Outdoors /Indoors without LEV		1.37	0.14	

Page 27 of 31

SAFETY DATA SHEET (according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA

Revision date: 01.05.2020 Version 4.2

ÂZŎŤ		Re	visior	n date: 01.05.2020	Version 4.2	2					
process with occasional controlled exposure (e.g. sampling)		1-4 hrs or >4 hrs	1	Indoors with LEV			0.14		0.0	1	
Use of ammonia in closed		1-4 hrs or >4 hrs	1	Outdoors / Indoors without LEV			0.34		0.03	3	
batch process (synthesis or formulation)	PROC 3	1-4 hrs or >4 hrs	1	Indoors with LEV	Indoors with LEV				<0.0)1	
Use of ammonia in batch process (synthesis) where		1-4 hrs or >4 hrs	1	Outdoors / Indoors	s without L	EV	6.86		0.69	9	
opportunity for exposure arises	PROC 4	1-4 hrs or >4	1	Indoors with LEV			0.69		0.07	7	
Mixing or blending in		1-4 hrs or >4	1	Outdoors / Indoors	s without L	EV	13.71		1.37	7	
batch process	PROC 5	1-4 hrs or >4	1	Indoors with LEV			0.07		0.0	1	
Transfer of ammonia (charging/discharging)		1-4 hrs or >4	1	Outdoors / Indoors	s without L	EV	13.71		1.37	7	
from/to vessels or large containers at non- dedicated facilities	PROC 8a	1-4 hrs or >4 hrs	ļ	Indoors with LEV			0.14		0.0	1	
Transfer of ammonia (charging/discharging)		1-4 hrs or >4 hrs	1	Outdoors / Indoors	s without L	EV	6.86		0.69	9	
from/to vessels or large containers at dedicated facilities	PROC 8b	1-4 hrs or >4 hrs	1	Indoors with LEV			0.69		0.07	7	
Transfer of ammonia into		1-4 hrs or >4 hrs	1	Outdoors / Indoors without LEV			6.86		0.69		
small containers	PROC 9	1-4 hrs or >4 hrs	1	Indoors with LEV			0.69		0.07		
Roller application or	PROC	1-4 hrs or >4 hrs	1	Outdoors / Indoors	Outdoors / Indoors without LEV				0.14	4	
brushing	10	1-4 hrs or >4 hrs	1	Indoors with LEV	Indoors with LEV				10.7	71	
.	PROC	1-4 hrs or >4 hrs	1	Outdoors / Indoors without LEV			107		10.7	71	
Non industrial spraying	11	1-4 hrs or >4 hrs	1	Indoors with LEV			2.14		0.2	1	
Treatment of articles by	PROC	1-4 hrs or >4 hrs	1	Outdoors / Indoors without LEV			13.71		1.37	7	
dipping and pouring	13	1-4 hrs or >4 hrs	1	Indoors with LEV			0.69		0.07	7	
	PROC	1-4 hrs or >4	1	Outdoors / Indoors without LEV			/ 0.34		0.03		
Use as a laboratory agent	15	1-4 hrs or >4	1	Indoors with LEV				0.03		<0.01	
Hand-mixing with intimate contact and PPE only	PROC 19	1-4 hrs or >4	1	Indoors with LEV			141.73		14.′	14	
Heat and pressure transfer fluids in	PROC	1-4 hrs or >4	1	Outdoors / Indoors	s without L	EV	1.71		0.17	7	
dispersive use but closed systems	20	1-4 hrs or >4	1	Indoors with LEV			0.14		0.0	1	
Table 3.2 Inhalation exp using the ECETOC TRA		entrations for a			ammonia (in pre	parations	of 5-2	5 % v	v/w) predicted	
					Anhydro	ous a	mmonia	Aqu 25%		ammonia (5-	
Description of activity	PROC	Exposure a	Exposure assumptions		Estimate		posure n mg/m3	Esti	mate	d Exposure ration mg/m3	
		Duration	Use	e of ventilation	No RPE	RP	E (95% uction)	No RPE		RPE (95% reduction)	
Used in a closed process,		1-4 hrs or >4 hrs	Out	idoors	0.00	NA		0.01		0.00	
no likelihood of exposure	PROC 1	1-4 hrs or >4 hrs	Inde	oors without LEV	0.01	NA		0.01		0.00	
Use of ammonia in a		>4hrs	Out	doors	24.79	1.24			3	1.53	
closed, continuous process with occasional	PROC 2	>4hrs	-	oors without LEV	35.42	1.7		43.7		2.19	
controlled exposure (e.g.		>4hrs	Inde	oors with LEV	3.53	0.18	3	4.38		0.22	

Page 28 of 31

SAFETY DATA SHEET (according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA

Revision date: 01.05.2020 Version 4.2

AZOT	•	•					
sampling)		1-4 hrs	Outdoors	14.88	0.74	18.38	0.92
		1-4 hrs	Indoors without LEV	22.25	1.06	26.25	1.31
		1-4 hrs	Indoors with LEV	2.13	0.11	2.63	0.13
		>4hrs	Outdoors	49.58	2.48	61.25	3.06
		>4hrs	Indoors without LEV	70.83	3.54	87.5	4.38
Use of ammonia in closed	DDOO 0	>4hrs	Indoors with LEV	7.08	0.35	8.75	0.44
batch process (synthesis or formulation)	PROC 3	1-4 hrs	Outdoors	29.75	1.49	36.75	1.84
		1-4 hrs	Indoors without LEV	42.5	2.13	52.50	2.63
		1-4 hrs	Indoors with LEV	4.25	0.21	5.25	0.26
		>4hrs	Outdoors	49.58	2.48	61.25	3.06
list of a manageria in the talk		>4hrs	Indoors without LEV	70.83	3.54	87.5	4.38
Use of ammonia in batch process (synthesis) where		>4hrs	Indoors with LEV	7.08	0.35	8.75	0.44
opportunity for exposure	PROC 4	1-4 hrs	Outdoors	29.75	1.49	36.75	1.84
arises		1-4 hrs	Indoors without LEV	42.5	2.13	52.5	2.63
		1-4 hrs	Indoors with LEV	4.25	0.21	5.25	0.26
		>4hrs	Outdoors	123.96	6.20	153.13	7.66
		>4hrs	Indoors without LEV	177.08	8.85	218.75	10.94
Mixing or blending in		>4hrs	Indoors with LEV	17.71	0.89	21.88	1.09
batch process	PROC 5	1-4 hrs	Outdoors	74.38	3.72	91.88	4.59
		1-4 hrs	Indoors without LEV	106.25	5.31	131.25	6.56
		1-4 hrs	Indoors with LEV	10.63	0.53	13.13	0.66
		>4hrs	Outdoors	123.96	6.20	153.13	7.66
Transfer of ammonia		>4hrs	Indoors without LEV	177.08	8.85	218.75	10.94
(charging/discharging)	PROC 8a	>4hrs	Indoors with LEV	17.71	0.89	21.88	1.09
from/to vessels or large		1-4 hrs	Outdoors	74.38	3.72	91.88	4.59
containers at non- dedicated facilities		1-4 hrs	Indoors without LEV	106.25	5.31	131.25	6.56
		1-4 hrs	Indoors with LEV	10.63	0.53	13.13	0.66
		>4hrs	Outdoors	74.38	3.72	91.88	4.59
Transfer of ammonia		>4hrs	Indoors without LEV	106.25	5.31	131.25	6.56
(charging/discharging)		>4hrs	Indoors with LEV	3.19	0.16	3.94	0.20
from/to vessels or large	PROC 8b	1-4 hrs	Outdoors	44.63	2.23	55.13	2.76
containers at dedicated facilities	0.0	1-4 hrs	Indoors without LEV	63.75	3.19	78.75	3.94
laointioo		1-4 hrs	Indoors with LEV	1.91	0.1	2.36	0.12
					1		
		>4hrs	Outdoors	99.17	4.96	122.50	6.13 9.75
_ ,		>4hrs	Indoors without LEV	141.67	7.08	175.00	8.75
Transfer of ammonia into small containers	PROC 9	>4hrs	Indoors with LEV	14.17	0.71	17.50	0.88
		1-4 hrs	Outdoors	59.50	2.98	73.50	3.68
		1-4 hrs	Indoors without LEV	85.00	4.25	105.00	5.25
		1-4 hrs	Indoors with LEV	8.5	0.43	10.50	0.53
		>4hrs	Outdoors	NA	NA	153.13	7.66
		>4hrs	Indoors without LEV	NA	NA	218.75	10.94
Roller application or	PROC	>4hrs	Indoors with LEV	NA	NA	21.88	1.09
brushing	10	1-4 hrs	Outdoors	NA	NA	91.88	4.59
		1-4 hrs	Indoors without LEV	NA	NA	131.25	6.56
		>4hrs	Outdoors	NA	NA	13.13	0.66
	PROC	>4hrs	Outdoors	NA	NA	613.20	30.66
Non-industrial spraying	11	>4hrs	Indoors without LEV	NA	NA	876.00	43.80
		>4hrs	Indoors with LEV	NA	NA	175.20	8.76

Page 29 of 31

SAFETY DATA SHEET

(according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA

Revision date: 01.05.2020 Version 4.2

	KAS	
7 /	\frown	т
23	9	
	Z	ZO

		1-4 hrs	Outdoors	NA	NA	367.92	18.40
		1-4 hrs	Indoors without LEV	NA	NA	525.60	26.28
		>4hrs	Outdoors	NA	NA	105.12	5.26
Treatment of articles by dipping and pouring	PROC 13	>4hrs	Outdoors	123.96	6.20	153.13	7.66
		>4hrs	Indoors without LEV	177.08	8.85	218.75	10.94
		>4hrs	Indoors with LEV	17.71	0.89	21.88	1.09
		1-4 hrs	Outdoors	74.38	3.72	91.88	4.59
		1-4 hrs	Indoors without LEV	106.25	5.31	131.25	6.56
		1-4 hrs	Indoors with LEV	10.63	0.53	13.13	0.66
Use as a laboratory agent	PROC 15	>4hrs	Indoors without LEV	35.42	1.77	43.75	2.19
		>4hrs	Indoors with LEV	3.54	0.18	4.38	0.22
		1-4 hrs	Indoors without LEV	21.25	1.06	26.25	1.31
		1-4 hrs	Indoors with LEV	2.13	0.11	2.63	0.13
Hand-mixing with intimate contact and PPE only	PROC 19	<4 hrs	Outdoors	NA	NA	153.13	7.66
		<4 hrs	Indoors without LEV	NA	NA	218.75	10.94
		1-4 hrs	Outdoors	NA	NA	91.88	4.59
		1-4 hrs	Indoors without LEV	NA	NA	131.25	6.56
Heat and pressure transfer fluids in dispersive use but closed systems	PROC 20	>4hrs	Outdoors	24.79	1.24	30.63	1.53
		>4hrs	Indoors without LEV	35.42	1.77	43.75	2.19
		>4hrs	Indoors with LEV	7.08	0.35	8.75	0.44
		1-4 hrs	Outdoors	14.88	0.74	18.38	0.92
		1-4 hrs	Indoors without LEV	21.25	1.06	26.25	1.31
		1-4 hrs	Indoors with LEV	4.25	0.21	5.25	0.26
3.3 General public / Consu	umer expos	sure					
Professional workers are e activities and are not inadve 3.3.1 Indirect exposure o	ertently expo	osed to ammo	onia.	at member	s of the public	are exclude	d from operation
Ammonia is ubiquitous in (ref. 'Ammonia in the UK' - In addition, there is no evi	the environ DEFRA).	ment with <3	0% of emissions resulting				•

Kow>3) is not met, the derivation of PNECs to protect against secondary poisoning is not required. The risk of indirect exposure of humans via the environment is therefore not considered.

3.4 Environmental exposure

The majority of ammonia in the environment originates from natural sources, predominantly decaying organic matter.

Wide dispersive professional uses of ammonia are diverse and widespread. The resulting environmental exposure is not expected to add significantly to already present background levels of ammonia in the environment. An additional assessment for environmental exposure for wide dispersive uses has therefore not been performed.

Page 30 of 31

SAFETY DATA SHEET

(according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA

Revision date: 01.05.2020 Version 4.2

AZOT

Exposure Scenario No. 4: Wide-dispersive end-use: Consumer use of aqueous ammonia

4.1 Exposure scenario

Consumers may be exposed to aqueous solutions of ammonia (containing up to 25 % w/w ammonia) when using a variety of products. In this section, exposures have been assessed for the consumer use of representative common products for which default data and scenarios are available (e.g. in the ECETOC TRA model or the ConsExpo 4.1 model and RIVM Factsheets). Although data are not available for other uses (e.g. inks and toners, water treatment chemicals etc.) exposures arising from these uses is not expected to be any worse than for the representative products and is therefore considered to be addressed by this assessment.

Consumers may be exposed to aqueous ammonia when using a variety of common household products including Do-It-Yourself (DIY) products such as coatings, paints, thinners and removers (PC9a) and fillers, putties and plasters (PC 9b), washing and cleaning products (e.g. all-purpose liquid; PC 35), cosmetic, personal care products such as hair dyes (PC 39) and fertilisers (PC12). Aqueous ammonia (at concentrations up to 25 % w/w) is added to water-based paints and other DIY products as a stabiliser. The composition of these products typically contains 0.2 % ammonia solution (at 25 % w/w ammonia) giving a final concentration in the product of 0.05 % w/w ammonia. Cleaning products are typically aqueous solutions containing 5 -10 % ammonia and will be diluted with water prior to use. Cosmetic products such a hair dyes contain ammonia at a maximum concentration of 4 % w/w.

Primary routes of exposure for consumers using common household products containing ammonia are the dermal and inhalation routes. Consumers are not expected to ingest ammonia during the normal use of household products and oral exposures are unlikely.

Consumer exposure to ammonia will depend on a number of factors including the frequency and duration of use. DIY products are likely to be used intermittently during the year, for several consecutive days. Cleaning products are expected to be used more frequently e.g. several times per week. Consumers are likely to use hair dye products several times per year, possibly up to once/ month. The durations of product use per day are likely to vary across the applications.

4.2 Exposure estimation

Consumer exposure to aqueous ammonia associated with the use of common household products (e.g. DIY, cleaning and cosmetic products) was assessed using ConsExpo version 4.1 and default assumptions presented in RIVM Factsheets relevant to the scenario being assessed. Dermal exposures were assessed using either the constant rate, dermal contact with product model or the instant application model, as appropriate. Inhalation exposure concentrations were assed using either the evaporation model or the spraying model as appropriate. To assess possible worst case scenarios, it was assumed that consumers will use DIY product at least once per month. Consumer exposure from the use of cleaning products has been assessed using the default scenario in ConsExpo 4.1 for the application of an all-purpose liquid cleaner: e.g. Household ammonia (10 % w/w ammonia) is diluted 1:80 times with water to give a final concentration of 0.125 % w/w. It is assumed that consumers will use cleaning products daily. In a worst case scenario, consumers are assumed to use hair dye once per month.

Consumer exposure arising from the use of fertilisers (containing up to 25% w/w ammonia) was assessed using the ECETOC TRA model and default parameters for the scenario PC12 fertilisers: lawn and garden preparations. It is assumed that amateur gardeners will apply fertilisers twice per year.

It is reasonable to assume that consumers will not always read product labels or follow advice recommended by the manufacturer. In a worst-case assessment of consumer exposure, no use of gloves or other PPE has been assumed.

Table 4.1 shows the dermal exposures predicted by ConsExpo for consumer uses of common household products containing aqueous ammonia. Dermal exposures are presented as: acute systemic dermal exposures reflecting the total exposure during one event and as chronic systemic exposures reflecting the exposure per event averaged over a year taking into account the use frequency. In a conservative assessment of dermal exposures, it was assumed that 100 % of the dose is absorbed dermally.

Table 4.1 also shows the inhalation exposure concentrations predicted by ConsExpo for consumer uses of common household products containing aqueous ammonia. Inhalation exposure concentrations are presented as acute airborne concentrations of ammonia associated with one event and as chronic exposure concentrations reflecting the concentration per event averaged over a year taking into account the use frequency.

Table 4.1 Dermal exposures to aqueous ammonia and inhalation exposure concentrations predicted by ConsExpo for consumers using common household products (e.g. DIY, cleaning and cosmetic products)

consumers using common nousehold products (e.g. DTY, cleaning and cosmetic products)									
Scenario	Ammonia % w/w	Use frequency	e rt c b	아 <u>리</u> 아 <u></u> 이	e ut e t	e n ö at h in c ni o hr			
PC9 Coatings, paints, thinners, removers (0.05% w/w ammonia)									
Applying waterborne paint using brush and roller	0.05	1 event /month	0.03	8.2x 10 ⁻⁵	7	0.0018			
Spraying paint from a can (application)	0.05	1 event /month	0.013	6.8x 10 ⁻⁵	0.67	5.1x10 ⁻⁵			
Applying general coatings	0.05	1 event /month	0.0021	1.9x10 ⁻⁶	6.7	2.4x10 ⁻⁴			
Applying paint remover	0.05	1 event /month	0.0042	1.1x10 ⁻⁵	3.2	3.6x10 ⁻⁴			
PC9b Fillers, putties, plasters etc (0.05 % w/w ammonia)									
Applying filler	0.05	1 event /month	4.2x10 ⁻⁴	3.4x10 ⁻⁶	0.37	5.1x10 ⁻³			
PC35 Washing and cleaning products (0.125 % w/w ammonia)									
Applying all-purpose liquid	0.125	104 times/	0.41	0.12	3.3	0.16			

Page 31 of 31

SAFETY DATA SHEET

(according to Regulation (EC) No 1907/2006 (REACH), ANNEX II)

AMMONIA

Revision date: 01.05.2020 Version 4.2

cleaner / detergent year PC39 Cosmetics, personal care products (4% w/w ammonia) 1 event / Applying hair dye 2.203 NA NA 4 month 67 PC12 Fertilisers: lawn and garden preparations (25 % w/w ammonia) 2 25 events/year 35.7 NA NA Applying fertilisers **4.3 Environmental exposure** The majority of ammonia in the environment originates from natural sources, predominantly decaying organic matter.

Wide dispersive consumer uses of ammonia are diverse and widespread. The resulting environmental exposure is not expected to add significantly to already present background levels of ammonia in the environment. An additional assessment for environmental exposure for wide dispersive uses has therefore not been performed.